Fourier transforms of some invariant distribution on semisimple Lie groups and Lie algebras

  • Dan Barbasch
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 728)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Arthur, J., The Selberg trace formula for groups of F rank one, Ann. of Math., vol. 100, 1974.Google Scholar
  2. (2).
    Warner, G., The Selberg trace formula for Lie groups of real rank one, preprint, to appear, Advances of Math.Google Scholar
  3. (3).
    Sally, P. and Warner, G., The Fourier transform on semisimple Lie groups of real rank one, Acta Math., vol. 131, 1973.Google Scholar
  4. (4).
    Osborne, S. and Warner, G., Multiplicities of integrable discrete series, The case of a nonuniform lattice in an ℝ-rank one group, to appear.Google Scholar
  5. (5).
    Herb, B., Fourier inversion of invariant integrals on semisimple real Lie groups, preprint.Google Scholar
  6. (6).
    Chao, W., Fourier inversion and the Plancherel formula for semisimple Lie groups of real rank two, Ph.D. Thesis, U. of Chicago, 1977.Google Scholar
  7. (7).
    Varadarajan, V., Harmonic Analysis on real reductive groups, Lecture Notes in Math. 576, Springer Verlag.Google Scholar
  8. (8).
    Barbasch, D., Fourier inversion for unipotent invariant integrals, to appear, Transactions of AMS.Google Scholar
  9. (9).
    Rossmann, W., Kirillov's Character formula for semisimple Lie groups, preprints.Google Scholar
  10. (10).
    Kashiwara, M. and Vergne, M., K-types and singular spectrum, same volume.Google Scholar
  11. (11).
    Barbasch, D. and Vogan, D., The local structure of characters, preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Dan Barbasch
    • 1
  1. 1.Institute for Advanced StudyPrinceton

Personalised recommendations