Advertisement

A note on random walks on compact groups

  • V. Losert
  • H. Rindler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 706)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cigler, J.: Über eine Verallgemeinerung des Hauptsatzes der Gleichverteilung, J. reine und angewandte Math. 216 (1961) 141–147.MATHGoogle Scholar
  2. [2]
    Hlawka, E.: Ein metrisches Gegenstück zu einem Satz von W.A. Veech, Monatshefte f. Math. 76, (1972) 436–447.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Kuipers, L., Niederreiter, H.: Uniform distribution of sequences, John Wiley and Sons, New York (1974).MATHGoogle Scholar
  4. [4]
    Losert, V.: Uniformly distributed sequences on compact, separable, non metrizable groups, Acta Sci. Math. 40 (1978) 107–110.MathSciNetMATHGoogle Scholar
  5. [5]
    Losert, V.: On the existence of uniformly distributed sequences in compact topological spaces I, TAMS to appear.Google Scholar
  6. [6]
    Losert, V.: On the existence of uniformly distributed sequences in compact topological spaces II, erscheint in Monatshefte f. Math.Google Scholar
  7. [7]
    Maxones, W., Muthsam, H., Rindler, H.: Bemerkungen zu einem Satz von E. Hlawka, Anz. Österr. Ak. Wiss. 1976, No. 7, 82–83.Google Scholar
  8. [8]
    Rindler, H.: Uniform distribution on locally compact groups, Proc. A.M.S. 57 (1976) 130–132.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Sigmund, K.: Über Verteilungsmaße von Maßfolgen auf kompakten Gruppen, Compositio Math. 21, (1969) 299–311.MathSciNetMATHGoogle Scholar
  10. [10]
    Veech, W.A.: Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, TAMS 140, (1969) 1–33.MathSciNetMATHGoogle Scholar
  11. [11]
    Veech, W.A.: Some questions of uniform distribution, Annals of Math. (2) 94 (1971) 125–138.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • V. Losert
    • 1
  • H. Rindler
    • 1
  1. 1.Institut für Mathematik der Universität WienWienAustria

Personalised recommendations