Advertisement

Incidence algebras, exponential formulas and unipotent groups

  • Arne Dür
  • Ulrich Oberst
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 969)

Keywords

Hopf Algebra Unipotent Group Indecomposable Object Combinatorial Interpretation Hall Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Anantharaman, Schémas en groupes sur une base de dimension 1, Bull.Soc.Math.France, Mem. 33 (1973), 5–79.zbMATHGoogle Scholar
  2. [2]
    H.Bass-E.H.Connell, Polynomial automorphisms and the Jacobian conjecture, to appear.Google Scholar
  3. [3]
    H.Cartan-S.Eilenberg, Homological Algebra, Princeton University Press 1956.Google Scholar
  4. [4]
    P.M. Cohn, Universal Algebra, Harper & Row 1965.Google Scholar
  5. [5]
    L. Comtet, Advanced Combinatorics, Reidel 1974.Google Scholar
  6. [6]
    M. Content-F. Lemay-P. Leroux, Catégories de Möbius et fonctorialités: un cadre général pour l'inversion de Möbius, J.Comb.Th.A 28 (1980), 169–190.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M.Demazure-P.Gabriel, Groupes Algébriques, North Holland 1970.Google Scholar
  8. [8]
    P.Doubilet-G.C.Rota-R.P.Stanley, The idea of generating function, in: Finite Operator Calculus, Academic Press 1975.Google Scholar
  9. [9]
    A.Dür, Inzidenzalgebren zu Cozyklen mit nichtleerer Nullstellenmenge, Diplomarbeit, Innsbruck 1981.Google Scholar
  10. [10]
    D.Foata-M.P.Schützenberger, Théorie Géométrique des Polynômes Eulériens, Springer Lecture Notes (SLN) 138, 1970.Google Scholar
  11. [11]
    P.Gabriel, Étude Infinitésimale des Schémas en Groupes, in: SLN 151, 1962/63/64.Google Scholar
  12. [12]
    P.Gabriel-F.Ulmer, Lokal präsentierbare Kategorien, SLN 221, 1971Google Scholar
  13. [13]
    P.Gabriel-M.Zisman, Calculus of Fractions and Homotopy Theory, Springer Ergebnisse 35, 1967.Google Scholar
  14. [14]
    A.Grothendieck-J.V.Verdier, Theorie des Topes et ..., SLN 269, 1963/64.Google Scholar
  15. [15]
    M.Hazewinkel, Formal Groups and Applications, Academis Press 1978.Google Scholar
  16. [16]
    P.T.Johnstone, Topos Theory, Academic Press 1977.Google Scholar
  17. [17]
    S.A. Joni, Lagrange inversion in higher dimensions and umbral operators, Lin.Multil.Alg. 6 (1978), 111–122.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Joyal, Une théorie combinatoire des séries formelles, Adv.Math. 42 (1981), 1–82.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    I.G.Macdonald, Symmetric Functions and Hall Polynomials, Clarendon 1979.Google Scholar
  20. [20]
    D.Mumford, Lectures on Curves on an Algebraic Surface, Ann.Math.Stud. 59, 1966.Google Scholar
  21. [21]
    I.Reiner, Maximal orders, Academic Press 1975.Google Scholar
  22. [22]
    J.E. Roos, Sur les derives de lim. Applications, C.R.Acad.Sc.Paris 254, (1961), 3702–3704.zbMATHGoogle Scholar
  23. [23]
    G.C.Rota-Kahaner-Odlyzko, Finite Operators calculus, in: Finite Operator Calculus, Academic Press 1975.Google Scholar
  24. [24]
    G.C.Rota, Coalgebras and Bialgebras in:Combinatorics (Notes by S.A.Joni), Umbral Calculus Conference, Oklahoma 1978.Google Scholar
  25. [25]
    J.P.Serre, Lie Algebras and Lie Groups, W.A.Benjamin 1965.Google Scholar
  26. [26]
    J.P. Serre, Groupes de Grothendieck des Schémas en Groupes Réductifs Déployés, in: Publ.Math. 34, (IHES 1968), 37–52.CrossRefzbMATHGoogle Scholar
  27. [27]
    R.P. Stanley, Exponential structures, Stud.Appl.Math. 59, (1978), 73–82MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R.P.Stanley, Generating Functions, in: Stud. in Comb., MAA Studies 17, 1978.Google Scholar
  29. [29]
    M.E.Sweedler, Hopf Algebras and Combinatorics, Umbral Calculus Conference, Oklahoma 1978.Google Scholar
  30. [30]
    B.J. Veisfeiler-I.V. Dolgacev, Unipotent group schemes over integral rings, Math.USSR Izv. 8, (1974), 761–800.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    E. Hairer-G. Wanner, On the Butcher group and general multi-value methods, Computing 13, (1974), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Arne Dür
    • 1
  • Ulrich Oberst
    • 1
  1. 1.Institut für Mathematik der Universität InnsbruckInnsbruckÖsterreich

Personalised recommendations