Generalized SCHUR numbers

  • Albrecht Beutelspacher
  • Walter Brestovansky
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 969)


Positive Integer Lecture Note Lower Bound Number Generalize Explicit Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, H.L. and Moser, L.: Sum-free sets of integers. Acta arith. XI (1966), 393–396.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fredricksen, H.: Schur Numbers and the Ramsey Numbers N(3,3,...,3;2). J. Combinat. Theory (A) 27 (1979), 376–377.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Halder, H.-R. and Heise, W.: Einführung in die Kombinatorik. Müchen — Wien, Hanser 1976.zbMATHGoogle Scholar
  4. 4.
    Schur, I.: Über die Kongruenz xm+ym≡zm (mod p). Jahresber. Deutsch. Math. Verein. 25 (1916), 114–117.Google Scholar
  5. 5.
    Wallis, W.D., Street, A.P. and Wallis, J.S.: Room squares, sum-free sets, Hadamard matrices. Springer lecture notes series, vol. 292, 1972.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Albrecht Beutelspacher
    • 1
  • Walter Brestovansky
    • 1
  1. 1.Fachbereich Mathematik der UniversitätMainzWest Germany

Personalised recommendations