Advertisement

Deformations of curves I moduli for hyperelliptic curves

  • O. A. Laudal
  • K. Lønsted
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 687)

Keywords

Irreducible Component Commutative Diagram Local Ring Hyperelliptic Curve Weierstrass Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accola, R.D.M.: Riemann Surfaces, Theta Functions, and Abelian Automorphisms Groups, Springer Lecture Notes 483, 1975.Google Scholar
  2. 2.
    Arbarello, E.: Weierstrass Points and Moduli of Curves, Compositio Math. 29 (1974), 325–342.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Deligne, P. and Mumford, D.: The irreducibility of the space of curves of given genus, Publ. Math. de l'I.H.E.S. 36 (1969), 75–110.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Farkas, H.M.: Special Divisors and Analytic Subloci of Teichmüller Space, Amer. J. Math. 88 (1966), 881–901.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grothendieck, A.: Fondéments de la Géométrie Algébrique (FGA), Extraits du Sém. Bourbaki 1957–62, Secrétariat Mathématique, Paris, 1962.Google Scholar
  6. 6.
    Grothendieck, A.: Séminaire de Géométrie Algébrique 1960/61 (SGA 1). Revêtements Etale et Groupe Fondamental, Springer Lecture Notes 224, 1971.Google Scholar
  7. 7.
    Grothendieck, A. et Dieudonné, J.: Eléments de Géométrie Algébrique, Chap. IV4, Publ. Math. de l'I.H.E.S. 32 (1967).Google Scholar
  8. 8.
    Hurwitz, A.: Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1–61.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lange, H.: Kurven mit rationaler Abbildung, Göttingen Habilitationsschrift, 1975.Google Scholar
  10. 10.
    Laudal, O.A.: Sections of Functors and the Problem of Lifting (Deforming) Algebraic Structures, Inst. Math. Univ. Oslo Preprint Ser. nr. 18, 1975.Google Scholar
  11. 11.
    Laudal, O.A.: A generalized Tri-secant Lemma, in Proceedings of a Symposium on algebraic Geometry, Univ. Tromsö, July 1977, Springer Lecture Notes (this volume).Google Scholar
  12. 12.
    Lønsted, K.: The hyperelliptic locus with special reference to characteristic two, Math. Ann. 222 (1976), 55–61.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lønsted, K. and Kleiman, S.L.: Basics on Families of hyperelliptic curves, Københavns Univ. Mat. Inst. Preprint Ser. 1977 no. 7, March 1977.Google Scholar
  14. 14.
    Mumford, D.: Lectures on Curves on an Algebraic Surface, Annals of Math. Studies 59, Princeton Univ. Press, 1970.Google Scholar
  15. 15.
    Mumford, D.: Geometric Invariant Theory, Ergebnisse d. Math., Bd. 34, Springer Verlag 1965.Google Scholar
  16. 16.
    Oort, F.: Fine and Coarse Moduli Schemes are different, Report 74-10, Dept. Math., Univ. of Amsterdam, 1974 (partly published in Séminaire d'Algèbre Paul Dubreil Paris 1975–76, Springer Lecture Notes 586, 1977).Google Scholar
  17. 17.
    Popp, H.: The singularities of the moduli scheme of curves, J. Number Theory 1(1969), 90–107.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rauch, H.E.: Weierstrass Points, Branch Points, and the Moduli of Riemann Surfaces, Comm. Pure a. Appl. Math. 12 (1959), 543–560.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • O. A. Laudal
    • 1
  • K. Lønsted
    • 2
  1. 1.Universitetet i Oslo Matematisk InstitutNorway
  2. 2.Matematisk InstitutUniversitetsparken 5København ØDenmark

Personalised recommendations