Advertisement

A generalized trisecant lemma

  • O. A. Laudal
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 687)

Keywords

Spectral Sequence Complete Intersection Plane Curve Hilbert Scheme Closed Subschemes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Ab]
    Abhyankar, S., Algebraic Space Curves, Séminaire de Mathématiques supérieures Été 1970. Les presses de l'Université de Montréal (1971).Google Scholar
  2. [An]
    Andreotti, Aldo, On a theorem of Torelli. Americal Journal of Mathematics Vol 80 (1958) pp. 801–828.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [E]
    Ellingsrud, Geir, Sur le schèma de Hilbert des variétés de codimension 2 dans IRe à cône de Cohen-Macaulay. Annales Sci. de l'Ecole Normale Supérieure. 4e série t. 8 (1975) p. 423–431.MathSciNetzbMATHGoogle Scholar
  4. [H]
    Holme, Audun, Embedding-obstruction for singular algebraic varieties in IPN. Acta mathematica Vol 135 (1975) pp. 155–185.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [K]
    Kleppe, Jan, Deformation of Graded Algebras. Preprint Series Department of Math., University of Oslo, no. 14 (1975).Google Scholar
  6. [L]
    Laksov, Dan, Some enumerative properties of secants to non-singular projective schemes. Math. Scand. 39 (1976) pp. 171–190.MathSciNetzbMATHGoogle Scholar
  7. [La 1]
    Laudal, O.A., Sur la théorie des limites projectives et inductives. Théorie homologique des ensembles ordonnés. Annales Sci. de l'Ecole Normale Supérieure. 3e série t. 82 (1965) pp. 241–296.MathSciNetzbMATHGoogle Scholar
  8. [La 2]
    Laudal, O.A., Sections of functors and the problem of lifting (deforming) algebraic structures I. Preprint Series no. 24 (1975) Institute of Mathematics, University of Oslo.Google Scholar
  9. [La 3]
    Laudal, O.A., Sections of functors and the problem of lifting (deforming) algebraic structures III. Preprint Series no. 6 (1976) Institute of Mathematics, University of Oslo.Google Scholar
  10. [M]
    Mumford, David, Algebraic Geometry I. Complex Projective Varieties, Springer-Verlag, Berlin, Grundlehren der Mathematischen 221, (1976). Wissenschaften 221, (1976).zbMATHGoogle Scholar
  11. [P]
    Peters, C.A.M. and Simonis, J., A secant formula. Quarterly J. Math. (Oxford) 27 (1976) pp. 181–189.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [PS]
    Peskine, C. and Szpiro, L., Liaison des variétés algébriques. Invent. Math. vol 26 (1974) pp. 271–302.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Sa]
    Samuel, P., Lectures on old and new results on algebraic curves. Tata Institute of Fund. Research, Bombay (1966).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • O. A. Laudal

There are no affiliations available

Personalised recommendations