Advertisement

Depth inequalities for complexes

  • Birger Iversen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 687)

Keywords

Free Module Local Cohomology Dualizing Complex Minimal Complex Regular Local Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Auslander, M., Modules over unramified regular local rings, Ill. J.Math. 5 (1961) p. 631–645MathSciNetzbMATHGoogle Scholar
  2. [2]
    Buchsbaum, D.A. and Eisenbud, D., What makes a complex exact? J. Algebra 25 (1973) p. 49–58MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Buchsbaum, D.A., Eisenbud, D., Some structure theorems for finite free resolutions. Advances in mathematics 12 (1974) p. 84–139MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Buchsbaum, D.A., Eisenbud, D., Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99 (1977) p. 447–485MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Grothendieck, A., (Notes by R. Hartshorne), Local Cohomology. Lecture Notes in Mathematics 41. Springer Verlag, Berlin 1967zbMATHGoogle Scholar
  6. [6]
    Hochster, M., Grade sensitive modules and perfect modules. Proc. London Math. Soc. (3) 29 (1974) p.55–76MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Iversen, B., Amplitude inequalities for complexes. to appear in Ann.scient. Éc. Norm. Sup. X (1977)Google Scholar
  8. [8]
    Knudsen, F., and Mumford, D., The projectivity of the moduli space of stable courves I. Math. Scand. 39 (1976) p. 19–55.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Lichtenbaum, S., On the vanishing of Tor in regular local rings. Ill. J. Math. 10 (1966) p. 220–226MathSciNetzbMATHGoogle Scholar
  10. [10]
    Peskine, C., and Szpiro, L., Dimension projective finie et cohomologie locale. Publ. Math. I.H.E.S. no. 42 (1973) p. 323–395.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Birger Iversen
    • 1
  1. 1.Aarhus UniversitetDenmark

Personalised recommendations