Advertisement

Deformation and stratification of secant structure

  • Audun Holme
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 687)

Keywords

Secant Scheme Base Extension Projective Scheme Closed Subscheme Canonical Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [EGA]
    Grothendieck, A., (with the collaboration of Dieudonné, J.) Elements de géométrie algébrique. Chapters I–IV. Institut des Hautes Études Scientifiques, Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32. Paris 1960–1967.Google Scholar
  2. [F]
    Fulton, W., Rational equivalence on singular varities. Institut des Hautes Études Scientifiques, Publ. Math., 45 (1975), 147–167.MathSciNetCrossRefGoogle Scholar
  3. [F-M]
    Fulton, W., and MacPherson, R., Intersecting cycles on an algebraic variety. Preprint Series 1976/77, No. 14, Department of Mathematics, Aarhus Univ.Google Scholar
  4. [H1]
    Holme, A., The notion of secant scheme for quasi-projective morphisms. Seminar reports, Matematisk Seminar, Univ. of Oslo, (1969).Google Scholar
  5. [H2]
    _____, Formal embedding and projection theorems. Amer. Journ. of Math., 93 (1971), 527–571.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [H3]
    _____, A general embedding theorem in formal geometry. Compositio Math., 26 (1973), 41–68.MathSciNetzbMATHGoogle Scholar
  7. [H4]
    _____, Projections of non-singular projective varieties. J. Math. Kyoto Univ. 13 (1973), 301–322.MathSciNetzbMATHGoogle Scholar
  8. [H5]
    _____, An embedding-obstruction for algebraic varieties. Bull. Amer. Math Soc. 80 (1974), 932–934.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [H6]
    _____, Embedding obstruction for smooth, projective varieties I. To appear in Advances in Mathematics (1977), Preprint Series, Univ. of Bergen (1974).Google Scholar
  10. [H7]
    _____, Embedding-obstruction for singular algebraic varieties in ℙN. Acta Math. 135 (1975), 155–185.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [H-R]
    _____, and Roberts, J., Pinch-points and multiple locus of generic projections of singular varieties. Preprint Series, Univ. of Bergen (1976).Google Scholar
  12. [J]
    Johnson, K.W., Immersion and embedding of projective varieties. Thesis, Brown University, 1976.Google Scholar
  13. [K]
    ________, The enumerative theory of singularities. Summer School on singularities, Oslo 1976. To appear on Wolters-Noordhoff Publishing, Groningen.Google Scholar
  14. [Lak 1]
    Laksov, D., Some enumerative properties of secants to nonsingular schemes. Math. Scand., 39 (1976), 171–190.MathSciNetzbMATHGoogle Scholar
  15. [Lak 2]
    _____, Secant bundles and Todd's formula for the double points of maps into ℙn. Preprint.Google Scholar
  16. [Lak 3]
    _____, Residual intersections and Todd's formula for the double locus of a morphism. Preprint.Google Scholar
  17. [Lau]
    Laudal, O.A., Sections of functors and the problem of lifting (deforming) algebraic structures I, II, III. Preprint series, Institute of Mathematics, Univ. of Oslo (1975).Google Scholar
  18. [Lℓ 1]
    Lluis, E., Sur l'immersion des variétés algébriques, Ann. of Math., 62 (1955), 120–127.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Lℓ 2]
    _____, De las singularidades que aparecen al proyectar variedades algebraicas. Bol. soc. Mat. Mexicana, 1 (1956), 1–9.MathSciNetGoogle Scholar
  20. [Lℓ 3]
    _____, Variedades algebraicas con ciertas condiciones en sus tangentes. Bol. Soc. Mat. Mexicana, (1962), 47–56.Google Scholar
  21. [M]
    Manin, Yu.I., Lectures on the K-functor in algebraic geometry. Russian Mathematical Surveys, Vol. 24 (1969), 1–89.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [P.-S.]
    Peters, C.A.M., and Simonis, J., A secant formula. Quart. J. Math. Oxford, 27 (1976), 181–189.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [R1]
    Roberts, J., The variation of singular cycles in an algebraic family of morphisms, Trans. Amer. Math. Soc. 168 (1972), 153–164.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [R2]
    _____, Singularity subschemes and generic projections. Trans. Amer. Math. Soc., 212 (1975), 229–268.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [R3]
    _____, A stratification of the dual variety (Summary of results with indications of proof), preprint (1976).Google Scholar
  26. [R4]
    _____, Hypersurfaces with nonsingular normalization. Preprint (1977).Google Scholar
  27. [S]
    Serre, J.-P., Algèbre Locale. Multiplicités. Springer Lecture Notes, Vol. 11 (1965).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Audun Holme
    • 1
  1. 1.BergenNorway

Personalised recommendations