Defining algebraic intersections

  • William Fulton
  • Robert MacPherson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 687)


Vector Bundle Irreducible Component Chern Class Intersection Product Proper Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. de Rham, Sur l'analysis situs des variétés à n dimensions, These faculté des Science de Paris, Gauthier-Villars, Paris, (1931).Google Scholar
  2. 2.
    W. Fulton and R. MacPherson, Intersecting cycles on an algebraic variety, Real and Complex Singularities Oslo, 1976, Sijthoff and Noordhoff, 179–197.Google Scholar
  3. 3.
    W. Fulton, Rational equivalence for singular varieties, Publ. Math. I.H.E.S. no. 45 (1975), 147–165.Google Scholar
  4. 4.
    W. Fulton, to appear.Google Scholar
  5. 5.
    H. Gillet, thesis, Harvard University, 1978.Google Scholar
  6. 6.
    V. Guillemin and S. Sternberg, Geometric Asymptotics, Math. Surveys no. 14, Amer. Math. Soc. 1977, p. 328.Google Scholar
  7. 7.
    R. M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Mathematica 129(1972) 75–136.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Kleiman, Chasles's enumerative theory of conics. A historical introduction. Aarhus University Preprint Series 1975/76 No. 32, Aarhus Denmark, to appear in an M.A.A. volume on algebraic geometry.Google Scholar
  9. 9.
    S. Lefschetz, Intersections and transformations of complexes and manifolds, Trans. A.M.S. 28(1926), 1–49.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Poincaré, Oeuvres, Tome VI, Gauthier-Villars, p. 218.Google Scholar
  11. 11.
    P. Samuel, Sur l'historie du quinzieme probleme de Hilbert, Gazette des Mathematiciens, Oct. 1974, p. 22–32.Google Scholar
  12. 12.
    P. Samuel, La notion de multiplicité en algèbre et en géométrie algébrique, J. Math. pures appl., 30, 1951, p. 159–274.MathSciNetzbMATHGoogle Scholar
  13. 13.
    F. Severi, Über die Grundlagen der Algebraischen Geometrie, Abh. math. Sem. Hamburg Univ. vol 9, 1933, p. 335–364.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.E.S. 47, 1977.Google Scholar
  15. 15.
    I. Vainsencher, Conics in characteristic 2, preprint, to appear in Compositio Math.Google Scholar
  16. 16.
    B. L. Van der Waerden, The theory of equivalence systems of cycles on a variety, Symposia Mathematica V, Istituto Nazionale di Alta Mathematica (1971), 255–262.Google Scholar
  17. 17.
    J.-L. Verdier, Le théorème de Riemann-Roch pour les intersections complètes, Astérisque 36–37 (1976), 189–228.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • William Fulton
    • 1
  • Robert MacPherson
    • 1
  1. 1.Brown UniversityProvidence

Personalised recommendations