Skip to main content

Diophantine equations over ℂ(t) and complex multiplication

  • Chapter
  • First Online:
Number Theory Carbondale 1979

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 751))

  • 592 Accesses

Abstract

The diophantine equations tx3−(t−1)y2=1 (or x) can be completely solved in ℂ(t) by complex multiplication in the ring of sixth (or fourth) roots of unity. Relations to well-known diophantine equations in Φ are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, N.H., Recherches sur les fonctions elliptiques, Journal für die reine und agnew. math., 3(1828) 160–190.

    Article  Google Scholar 

  2. Brumer, A. and Kramer, K., The rank of elliptic curves, Duke Math. Journal, 44(1977) 715–743.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassels, J.W.S., Diophantine equations with special reference to elliptic curves, Journal London Math. Soc., 40(1966) 193–291.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassels, J.W.S., A diophantine equation over a function field, Journal Australian Math. Soc., 25(1978) 385–422.

    Article  MathSciNet  MATH  Google Scholar 

  5. Davenport, H., On f3 (t)−g2(t), Norske. Vid. Selsk, Forh. 38(1965) 86–87.

    MathSciNet  Google Scholar 

  6. Königsberger, L., Die Transformation, die Multiplication und die Modulargleichungen der Elliptischen Functionen, Teubner, Leipzig, 1868.

    Google Scholar 

  7. Lang, S., Elliptic Curves, Diophantine Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1978.

    Book  MATH  Google Scholar 

  8. Mordell, L.J., On the rational solutions of the indeterminate equations of third and fourth degrees, Proc. Cambridge Philos. Soc., 21(1922) 179–192.

    MATH  Google Scholar 

  9. Mordell, L.J., Diophantine Equations, Academic, London, New York 1969.

    MATH  Google Scholar 

  10. Nagell, M.T., L'analyse indeterminée de degré supérieur, Mem. des Sci. Math., 1929, vol. 39.

    Google Scholar 

  11. Schmidt, W.M., Thues equation over function fields, Journal Australian Math. Soc., 25(1978) 385–422.

    Article  MathSciNet  Google Scholar 

  12. Weil, A., L'arithmétique sur les courbes algébriques, Acta Math. 52(1928) 281–315.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Melvyn B. Nathanson

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this chapter

Cite this chapter

Cohn, H. (1979). Diophantine equations over ℂ(t) and complex multiplication. In: Nathanson, M.B. (eds) Number Theory Carbondale 1979. Lecture Notes in Mathematics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062702

Download citation

  • DOI: https://doi.org/10.1007/BFb0062702

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09559-0

  • Online ISBN: 978-3-540-34852-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics