Advertisement

Realizing a weak solution on a probability space

  • V. E. Beneš
Stochastic Equations
Part of the Lecture Notes in Mathematics book series (LNM, volume 695)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theor. Probability Appl., vol. 5 (1960), pp. 285–301.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. P. Yershov, Structure of solutions of stochastic equations (in Russian), Proceedings of the seminar-school on the theory of stochastic processes, at Druskininkai, November 25–30, 1974, published by Institute of Physics and Mathematics Acad. Sci. Lithuanian SSR and Steklov Mathematical Institute Acad. Sci. USSR, Vilnius, 1975, Part 1, pp. 107–122.Google Scholar
  3. 3.
    P. R. Halmos, Measure theory, Van Nostrand, Princeton, 1958, p. 173.Google Scholar
  4. 4.
    D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. USA, vol. 18 (1942), pp. 108–111.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Z. Semadeni, Banach spaces of continuous functions, vol. 1, Polish Scientific Publishers, Warsaw, 1971, p. 466.MATHGoogle Scholar
  6. 6.
    M. P. Yershov, Extension of measures and stochastic equations (in Russian), Theor. Probability Appls., vol. 19 (1974), pp. 457–471.Google Scholar
  7. 7.
    V. E. Beneš, Weak and strong solutions for stochastic equations, to appear in Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete.Google Scholar
  8. 8.
    V. E. Beneš, Nonexistence of strong nonanticipating solutions to stochastic DEs: implications for functional DEs, filtering, and control. To appear in J. Stochastic Processes Appls.Google Scholar
  9. 9.
    B. S. Tsirel'son, An example of a stochastic differential equation not possessing a strong solution (in Russian), Theor. Probability Appls., vol. 20 (1975), pp. 427–430.Google Scholar
  10. 10.
    J. Neveu, Atomes conditionels d'éspaces de probabilité et théorie de l'information, in Symposium on probability methods in analysis, Loutraki, Greece, June 5–July 4, 1966, Springer Lecture Notes in Mathematics, No. 31, Springer-Verlag, Berlin, Heidelberg, New York, 1967, pp. 256–271.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • V. E. Beneš
    • 1
  1. 1.Bell LaboratoriesMurray Hill

Personalised recommendations