Advertisement

Real holomorphy rings in real algebraic geometry

  • Heinz-Werner Schülting
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Maximal Ideal Function Field Valuation Ring Real Point Real Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (A) E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg 5 (1927), 100–115.MathSciNetCrossRefzbMATHGoogle Scholar
  2. (Ab) S. Abyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348.MathSciNetCrossRefGoogle Scholar
  3. (Be) E. Becker, Hereditarily-pythagorean fields and orderings of higher level, IMPA Lecture Notes, Rio de Janeiro, 1978zbMATHGoogle Scholar
  4. (B) L. Bröcker, Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149–163MathSciNetCrossRefzbMATHGoogle Scholar
  5. (BB) E. Becker and L. Bröcker, On the description of the reduced Wittring, J. of Algebra 52 (1978), 328–346.CrossRefzbMATHGoogle Scholar
  6. (CT) J.L. Colliot-Thélène, Formes quadratiques multiplicatives et variétés algébriques, Bull. Soc. Math. France, 106 (1978), 113–151MathSciNetzbMATHGoogle Scholar
  7. (CC) M. Coste and M.-F. Coste-Roy, La topologie du spectre reel, manuscript.Google Scholar
  8. (H) H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109–326.MathSciNetCrossRefzbMATHGoogle Scholar
  9. (K) M. Knebusch, On the extension of real places, Comment. Math. Helv. 48 (1973), 354–369.MathSciNetCrossRefzbMATHGoogle Scholar
  10. (S) H.W. Schülting, On real places of a field and their holomorphy ring, to appear in Comm. Algebra.Google Scholar
  11. (Sh) I.R. Shafarevich, Lectures on minimal models and birational transformations of two dimensional schemes, Tata Institute of Fundamental Research, Bombay, 1966.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Heinz-Werner Schülting
    • 1
  1. 1.Universität, Abt. MathematikDortmundBRD

Personalised recommendations