Advertisement

Faisceau structural sur le spectre réel et fonctions de Nash

  • Marie-Françoise Roy
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Totalement Positif Real Algebraic Geometry Nash Function Peut Supposer Representant Canonique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ARTIN et MAZUR: On periodic points. Annals of mathematics no 81, 1965.Google Scholar
  2. [2]
    BOCHNAK et EFROYMSON: Real algebraic geometry and the 17 th Hilbert problem Math. Annalen no 251 ou BOCHNAK et EFROYMSON: Introduction to Nash Functions, ce volume.Google Scholar
  3. [3]
    COSTE M. et COSTE-ROY M.-F.: Le spectre étale réel d’un anneau est spatial, Comptes rendus de l’Académie des Sciences, t. 290, série A-91, 1980.Google Scholar
  4. [4]
    COSTE M. et ROY M.-F.: La topologie du spectre réel, Contemporary Mathematics, 1981.Google Scholar
  5. [5]
    COSTE M. et COSTE-ROY M.-F.: Topologie for real algebraic geometry, A. Koch éditeur: topos theoretic methods in geometry, Various publications séries no 30, Aarhus Universitet, 1979.Google Scholar
  6. [6]
    COSTE M.: Ensemble semi-algébriques et fonctions de Nash, Prépublications de l’Université Paris-Nord, 1981.Google Scholar
  7. [7]
    DELFS H.: Kohomologie affine semi-algebraisches Raüme, Thèse, 1980, Université de Regensburg.Google Scholar
  8. [7’]
    LAFON J.-P.: Algèbre locale (à paraître).Google Scholar
  9. [8]
    NAGATA: Local rings, Robert E. Krieyer publishing company, 1975.Google Scholar
  10. [9]
    RAYNAUD: Anneaux locaux henséliens. Lecture notes in mathematics, Springer-Verlag, Vol. 169, 1970.Google Scholar
  11. [10]
    TOGNOLI A.: Algebraic geometry and Nash functions. Istituto nazionale di alta matematica, Institutiones mathematicae, volume III, Academic Press, 1978.Google Scholar
  12. [11]
    ZARISKI et SAMUEL P.: Commutative algebra.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Marie-Françoise Roy
    • 1
  1. 1.Université de Paris-Nord et Université de NiameyNiger

Personalised recommendations