Advertisement

On real one-dimensional cycles

  • Friedrich Ischebeck
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Prime Divisor Strong Topology Pure Dimension Algebraic Subset Prime Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A., Haefliger, A.: La classe d’homologie fondamentale d’un espace analytique. Bull.Soc.math.France 89 (1961)461–513MathSciNetzbMATHGoogle Scholar
  2. 2.
    Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Mich.math. J. 7 (1960)137–159MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bröcker, L.: Reelle Divisoren. Arch.d.Math. 35 (1980)140–143MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bröcker, T., tom Dieck, T.: "Kobordismentheorie". Lecture Notes in Math. 178, Springer-Verl. Berlin-Heidelberg-New York 1970zbMATHGoogle Scholar
  5. 5.
    Colliot-Thélène, J.-L., Ischebeck, F.: L’équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles. C.R.Acad.Sc. Paris, 292 (1981) Série I 723–725zbMATHGoogle Scholar
  6. 6.
    Fulton, W.: Rational equivalence on singular varieties. Publ.Math.IHES 45 (1975)147–167MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hironaka, H.: Resolutions of singularities of an algebraic variety over a field of characteristic zero. Annals of Math. 79 (1964)109–326MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ischebeck, F.: Reelle Divisoren und Nullzyklen. Preprint.Google Scholar
  9. 9.
    Ischebeck, F.: Binäre Formen und Primideale. man.math. 35 (1981) 147–163MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tognoli, A.: "Algebraic Geometry and Nash Functions". Acad. Press, London-New York 1978zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Friedrich Ischebeck
    • 1
  1. 1.Mathematisches Institut der Universität MünsterMünster BRDeutschland

Personalised recommendations