Separation des composantes connexes reelles dans le cas des varietes projectives

  • Jean Houdebine
  • Louis Mahé
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)


Real Closed Field Note Encore Nous Pouvons Basic Algebraic Geometry Matrice Macroscopiques 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. DELFS, M. KNEBUSCH: Semialgebraic topology over a real closed field II, Math. Z. 178, 175–213 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P.R. HALMOS: A Hilbert space problem book, Prnceton, Van Nostrand Company (1967).zbMATHGoogle Scholar
  3. [3]
    M. KAROUBI: Localisation de formes quadratiques I, Ann. Sc. Ec. N. Sup. 4e série, 7, fasc. 3 (1974) 359–404.MathSciNetzbMATHGoogle Scholar
  4. [4]
    M. KNEBUSCH: Symmetric bilinear forms over algebraic varieties, in conf. on quadratic forms, Queen’s papers in p. and ap. Math. no 46 Orzech ed. (1977) 103–283.Google Scholar
  5. [5]
    L. MAHE: Signatures et composantes connexes. Math. Annalen (à paraître).Google Scholar
  6. [6]
    I. SHAFAREVICH: Basic Algebraic geometry, Springer Study Edition (1977).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Jean Houdebine
    • 1
  • Louis Mahé
    • 1
  1. 1.IRMAR Université de Rennes IRennes-CedexFrance

Personalised recommendations