Advertisement

Zur Theorie der semialgebraischen Wege und Intervalle über einem reell abgeschlossenen Körper

  • Hans Delfs
  • Manfred Knebusch
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Real Closed Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [C]
    P.J. Cohen, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math. 22, 131–151 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Cs]
    M. Coste, Ensembles semi-algebriques, this volume.Google Scholar
  3. [DK1]
    H. Delfs, M. Knebusch, Semialgebraic topology over a real closed field I: Paths and components in the set of rational points of an algebraic variety, Math. Z. 177, 107–129 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [DK2]
    H. Delfs, M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178, 175–213 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [DK3]
    H. Delfs, M. Knebusch, On the homology of algebraic varieties over real closed fields, erscheint demnächst, preprint Univ. Regensburg 1981.Google Scholar
  6. [G]
    W.D. Geyer, Dualität bei abelschen Varietäten über reell abgeschlossenen Körpern, J. reine angew. Math. 293/294, 62–66 (1977).MathSciNetzbMATHGoogle Scholar
  7. [K]
    M. Knebusch, On algebraic curves over real closed fields I, II. Math.Z. 150, 49–70; 151, 189–205 (1976).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Hans Delfs
    • 1
  • Manfred Knebusch
    • 1
  1. 1.Fakultät für Mathematik UniversitätRegensburg

Personalised recommendations