Real spectra and distributions of signatures

  • Ludwig Bröcker
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)


Function Field Valuation Ring Real Spectrum Spectral Space Real Algebraic Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Univ. Hamburg 3, 319–323 (1924)MathSciNetCrossRefGoogle Scholar
  2. [B-Br]
    Becker, E. and Bröcker, L.: On the description of the reduced Wittring. J. of Algebra, 328–346 (1978)Google Scholar
  3. [B-K]
    Becker, E. und Köpping, E.: Reduzierte quadratische Formen und Semiordnungen reeller Körper. Abh. Math. Sem. Univ. Hamburg 46, 143–177 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Br 1]
    Bröcker, L.: Zur Theorie der quadratischen Formen über formalreellen Körpern. Math. Ann. 210, 233–256 (1974)MathSciNetCrossRefGoogle Scholar
  5. [Br 2]
    Bröcker, L.: Characterizations of fans and hereditarily pythagorean fields. Math. Z. 152, 149–163 (1976)CrossRefzbMATHGoogle Scholar
  6. [Br 3]
    Bröcker, L.: Reelle Divisoren. Arch. Math. 35, 140–143 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Br 4]
    Bröcker, L.: Positivbereiche in kommutativen Ringen. to appear in Abh. Math. Sem. Univ. HamburgGoogle Scholar
  8. [Bru 1]
    Brumfiel, G.W.: Partial ordered rings and semi-algebraic geometry. Cambridge University Press (1979)Google Scholar
  9. [Bru 2]
    Brumfiel, G.W.: Real valuation rings and ideals. Conference on real algebraic geometry and quadratic forms. Rennes (1981)Google Scholar
  10. [CT]
    Colliot-Thélène, J.L.: LetterGoogle Scholar
  11. [C-CR]
    Coste, M. et Coste-Roy, M.F.: La topologie du spectre réel. Manuscript. Paris-Nord 1980Google Scholar
  12. [CR]
    Coste-Roy, M.F.: Spectre réel d’un anneau et topos étale réel. Thèse. Université Paris Nord (1980)Google Scholar
  13. [D]
    Delfs, H.: Kohomologie affiner semialgebraischer Räume. Thesis, Regensburg (1980)Google Scholar
  14. [D-K 2]
    Delfs, H. und Knebusch, M.: Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces. Math. Z. 178, 175–213 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [EPT]
    Everybody proved that theorem.Google Scholar
  16. [K]
    Knebusch, M.: On the local theory of signatures and reduced quadratic forms. Abh. Math. Sem. Univ. Hamburg 51 149–195 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [P]
    Pfister, A.: Quadratische Formen in beliebigen Körpern. Inventiones math. 1, 116–132 (1966)MathSciNetCrossRefGoogle Scholar
  18. [Sch]
    Schülting, H.W.: Real holomorphy rings in real algebraic geometry. Conference on real algebraic geometry and quadratic forms. Rennes (1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Ludwig Bröcker
    • 1
  1. 1.FB. MathematikUniversität MünsterMünster

Personalised recommendations