Advertisement

The divisor class groups of some rings of global real analytic, Nash or rational regular functions

  • Jacek Bochnak
  • Wojciech Kucharz
  • Masahiro Shiota
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Vector Bundle Fractional Ideal Zariski Open Subset Algebraic Subset Trivial Vector Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benedetti, R., Tognoli A.: Approximation theorems in real algebraic geometry, Seminaire Risler, Université Paris VII, 1980.Google Scholar
  2. 2.
    Benedetti R., Tognoli A.: On real algebraic vector bundles, Bull.Sc. Math., 104, 89–112, (1980).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bochnak J.: Un critère de factorialité des anneaux globaux réguliers, C.R.A.S. Paris, 283, 285–286, (1976).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bochnak J.: Sur la factorialité des anneaux de fonctions analytiques. C.R.A.S. Paris, 283, 269–273, (1974).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bochnak J., Efroymson G.: Real Algebraic Geometry and the 17th Hilbert Problem, Math. Ann. 251, 213–241 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borel A., Haefliger A.: La class d’homologie fondamentale d’un espace analytique, Bull.Soc.Math. France 89, 461–513, (1961).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bourbaki N.: Algèbre Commutative, Ch. VII, Paris 1965.Google Scholar
  8. 8.
    Efroymson G.: Nash rings on planar domains, Trans.Amer.Math.Soc. 249(2), 435–445, (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fossum R.: The Divisor Class Group of a Krull Domain, Springer Verlag 1973.Google Scholar
  10. 10.
    Hironaka H.: Introduction to real analytic sets and real analytic maps, Instituto Matematico “L. Tonelli” dell’Universita di Pisa 1973.Google Scholar
  11. 11.
    Hironaka H.: Subanalytic sets, Volume in honor of Y.Akizuki, Number theory, algebraic geometry and commutative algebra, 453–493, Tokyo 1973.Google Scholar
  12. 12.
    Hirzebruch F.: Topological methods in Algebraic Geometry, Springer Verlag, 1966.Google Scholar
  13. 13.
    Hubbard J.: On the cohomology of Nash sheaves. Topology 11, 265–270. (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kucharz W.: On analytic sets with given singularities, to appear.Google Scholar
  15. 15.
    Palais R.: Equivariant, real algebraic differential topology, Brandeis University, (preprint), 1972.Google Scholar
  16. 16.
    Risler J.J.: Sur l’anneau des fonctions de Nash globales, Ann.Sc. de l’Ecole Nor.Sup. 8 (3), 365–378, (1975).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Samuel P.: Anneaux Factoriels, Bol.Soc.Math., Sâo Paulo, 1964.Google Scholar
  18. 18.
    Serre J.P.: Faisceaux algébriques cohérents, Ann. of Math., 81, 197–278, (1955).CrossRefzbMATHGoogle Scholar
  19. 19.
    Shiota M.: Sur la factorialité de l’anneau des fonctions analytiques, C.R.A.S. Paris 285, 253–255, (1977).MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shiota M.: On the unique factoriality of the ring of Nash functions Publ. R.I.M.S., Kyoto University, to appear.Google Scholar
  21. 21.
    Shiota M.: Sur la factorialité de l’anneau des fonctions lisses rationnelles, C.R.A.S., Paris. 292, 67–70 (1981).MathSciNetzbMATHGoogle Scholar
  22. 22.
    Siu Y.: Noetheriannes of ring of holomorphic functions, Proc.Amer. Math. Soc. 21, (1969).Google Scholar
  23. 23.
    Silhol R.: Etude cohomologique des variètés algebriques réelles, preprint, University of Ferrara, (1980).Google Scholar
  24. 24.
    Tognoli A.: Algebraic approximation of manifolds and spaces. Seminaire Bourbaki, November 1979.Google Scholar
  25. 25.
    Tognoli A.: Une remarque sur les fibrés vectoriels analytiques et de Nash, C.R.A.S. Paris 290, 321–324 (1980).MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tognoli A.: Algebraic geometry and Nash functions, Institutiones mathematicae, Vol. III, Acad. Press, London-New York, 1978.Google Scholar
  27. 27.
    Benedetti R., Tognoli A.: Remarks and counterexamples in real algebraic vector bundles and cycles, This volume.Google Scholar
  28. 28.
    Shiota M.: Real algebraic realization of characteristic classes, preprint, Kyoto University (1981).Google Scholar
  29. 29.
    Akbulut S., King H.: article in preparation, University of Maryland.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Jacek Bochnak
    • 1
  • Wojciech Kucharz
    • 2
  • Masahiro Shiota
    • 3
  1. 1.Department of MathematicsVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of MathematicsUniversity of KatowiceKatowicePoland
  3. 3.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations