Advertisement

Remarks and counterexamples in the theory of real algebraic vector bundles and cycles

  • R. Benedetti
  • A. Tognoli
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Line Bundle Zariski Topology Affine Variety Algebraic Manifold Real Algebraic Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BOREL A. and HAEFLIGER A. La classe d’homologie fondamentale d’un espace analytique Bull.Soc.Math. France 89 (1961) pp.461–513.MathSciNetzbMATHGoogle Scholar
  2. [2]
    BENEDETTI R. and TOGNOLI A. On real algebraic vector bundles Bull.Sc.math. 2e série, 104, 89–112 (1980)MathSciNetzbMATHGoogle Scholar
  3. [3]
    BOCHNAK J., KUCHARZ W. and SHIOTA M. The divisor class groups of global real analytic, Nash or rational regular function. This volume.Google Scholar
  4. [4]
    BOCHNAK J. Topology of real algebraic sets-some open problems. This volume.Google Scholar
  5. [5]
    TOGNOLI A. Algebraic geometry and Nash functions Institutiones mathematicae, Vol.III, Acad.Press 1978.Google Scholar
  6. [6]
    BENEDETTI R. and DEDO’ M. The topology of two dimensional real algebraic varieties Ann.Mat.Pura Appl. (IV) vol. CXXVII (1981) pp. 141–171.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    TOGNOLI A. Algebraic approximation of manifolds and spaces Sém.Bourbaki, 32 éme année (1979) no 548.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. Benedetti
    • 1
  • A. Tognoli
    • 2
  1. 1.Istituto MatematicoUniv. di PisaItaly
  2. 2.Istituto Matematico Univ. di FerraraInst. Math. Univ. de Tours.France

Personalised recommendations