Advertisement

The real holomorphy ring and sums of 2n-th powers

  • Eberhard Becker
Contributions Des Participants
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Maximal Ideal Valuation Ring Real Field Versus Versus Versus Versus Versus Residue Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    Becker, E.: Hereditarily pythagorean fields and orderings of higher level. IMPA Lecture Notes, No. 29 (1978), Rio de Janeiro.Google Scholar
  2. [B2]
    Becker, E.: Summen n-ter Potenzen in Körpern, J. reine angew. Mathematik 307/308 (1979), 8–30.Google Scholar
  3. [B3]
    Becker, E.: Partial orders on a field and valuation rings, Comm. Alg. 7 (1979), 1933–1976.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B4]
    Becker, E.: Valuations and real places in the theory of formally real fields, these Proceedings.Google Scholar
  5. [B-H-R]
    Becker, E. and Harman, J. and Rosenberg, A.: Signatures of fields and extension theory, J. reine angew. Mathematik, to appear.Google Scholar
  6. [B-K]
    Becker, E. and Köpping, E.: Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg 46 (1977), 143–177.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Br 1]
    Bröcker, L.: Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149–163.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Br 2]
    Bröcker, L.: Über die Pythagoraszahl eines Körpers, Arch. Math. 31 (1978), 133–136.CrossRefzbMATHGoogle Scholar
  9. [D-D]
    Diller, J. and Dress, A.: Zur Galoistheorie pythagoreischer Körper, Arch. Math. 16 (1965), 148–152.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [E]
    Ellison, W.J.: Waring’s problem, Amer. Math. Monthly 78 (1971), 10–36.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [E-L-W]
    Elman, R. and Lam, T.Y. and Wadsworth, A.: Orderings under field extensions, J. reine angew. Math. 306 (1979), 7–27.MathSciNetzbMATHGoogle Scholar
  12. [G]
    Gilmer, R.: Multiplicative ideal theory, Kingston 1968.Google Scholar
  13. [Ge]
    Geyer, W.-D.: Galois groups of intersections of local fields, Israel J. Math. 30 (1978), 382–396.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [H-W]
    Hardy, G.H. and Wright, E.M.: An introduction to the theory of numbers, Oxford 1960.Google Scholar
  15. [H]
    Hilbert, D.: Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem), Math. Ann. 67 (1909), 281–300.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [He]
    Heitmann, R.C.: Generating ideals in Prüfer domains, Pac. J. Math. 62 (1976), 117–126.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Jo]
    Joly, J.R.: Sommes des puissances d-ièmes dans un anneau commutatif, Acta Arithm. 17 (1970), 37–114.MathSciNetzbMATHGoogle Scholar
  18. [J]
    Jacob, B.: On the structure of pythagorean fields, J. Algebra 68 (1981), 247–267.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [K]
    Kamke, E.: Zum Waringschen Problem für rationale Zahlen und Polynome, Math. Ann. 87 (1922), 238–245.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [K-P]
    Koch, H. and Pieper, H.: Zahlentheorie. Ausgewählte Methoden und Ergebnisse, Berlin 1976.zbMATHGoogle Scholar
  21. [Kn]
    Knebusch, M.: On the extension of real places, Comment. Math. Helv. 48 (1973), 354–369.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [L1]
    Lam, T.Y.: The algebraic theory of quadratic forms, Reading 1973.Google Scholar
  23. [L2]
    Lam, T.Y.: The theory of ordered fields, in: Proceedings of the Algebra and Ring Theory Conference (ed. B. Mc Donald), Univ. of Oklahoma 1979, Lect. Not. in Pure and App. Math. Vol. 55.Google Scholar
  24. [Sch 1]
    Schülting, H.-W.: Über reelle Stellen eines Körpers und ihren Holomorphiering, Ph.D. thesis, Dortmund 1979.Google Scholar
  25. [Sch 2]
    Schülting, H.-W.: On real places of a field and their holomorphy ring, Comm. Alg., to appear.Google Scholar
  26. [Sch 3]
    Schülting, H.-W.: Über die Erzeugendenzahl invertierbarer Ideale in Prüferringen, Comm. Alg. 7 (1979), 1331–1349.CrossRefzbMATHGoogle Scholar
  27. [S]
    Siegel, C.L.: Darstellung total positiver Zahlen durch Quadrate, Math. Z. 11 (1921), 246–275.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Z-S]
    Zariski, O. and Samuel, P.: Commutative algebra II, New York 1960.Google Scholar

Added in proof

  1. [J2]
    Jacob, B.: Fans, real valuations and hereditarily-Pythagorean fields, Pac. J. Math. 93 (1981), 95–105.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [P]
    Pourchet, Y.: Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques, Acta Arithm. 19 (1971), 89–104.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Eberhard Becker
    • 1
  1. 1.Mathematisches InstitutUniversität DortmundDortmund 50

Personalised recommendations