Advertisement

Ensembles semi-algebriques

  • Michel Coste
Articles De Synthèse
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Real Closed Field Nous Allons Nash Function Face Iteree Voisinage Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. ARTIN, B. MAZUR: On periodic points, Annals of Math. 81 (1965), 82–99.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. BOCHNAK, G. EFROYMSON: Real algebraic geometry and the 17th Hilbert problem, Math. Annalen 251 (1980), 213–242.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [2b]
    J. BOCHNAK, G. EFROYMSON: An Introduction to Nash Functions, ce volume.Google Scholar
  4. [3]
    G.W. BRUMFIEL: Partially ordered rings and semi-algebraic geometry, Cambridge University Press, 1979.Google Scholar
  5. [4]
    P.J. COHEN: Decision procedures for real and p-adic fields, Commun. Pure & Applied Math. 22 (1969), 131–151.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [5]
    M. COSTE, M.-F. COSTE-ROY: Topologies for real algebraic geometry, dans Topos theoretic methods in geometry, Aarhus Univ. Various Publication Séries 30, A. Kock éd., 1979.Google Scholar
  7. [6]
    M. COSTE, M.-F. ROY: La topologie du spectre réel, à paraître dans Contemporary Mathematics.Google Scholar
  8. [7]
    M. COSTE: Ensembles semi-algébriques et fonctions de Nash, Prépublications mathématiques 18, Université Paris-Nord, 1981.Google Scholar
  9. [8]
    H. DELFS: Kohomologie affiner semi-algebraischer Räume, Thèse, Univ. Regensburg, 1980.Google Scholar
  10. [9]
    C. DELZELL: A constructive, continous solution to Hilbert’s 17th problem, and other result in semi-algebraic geometry, These, Stanford Univ., 1980.Google Scholar
  11. [10]
    G. EFROYMSON: A Nullstellensatz for Nash rings, Pacific J. Math. 54 (1974), 101–112.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [11]
    G. EFROYMSON: Substitution in Nash functions, Pacific J. Math. 63 (1976), 137–145.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [12]
    R. HARDT: Semi-algebraic local triviality in semi-algebraic mappings, American American Journal of Mathematics 102 (1980), 291–302.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [13]
    H. HIRONAKA: Triangulation of semi-algebraic sets, Proc. Symp. in Pure Math. 29 (A.M.S. 1975), 165–185.MathSciNetCrossRefGoogle Scholar
  15. [14]
    L. HORMANDER: Linear partial differential operators, Springer-Verlag.Google Scholar
  16. [15]
    J. HOUDEBINE: Lemme de séparation, multigraphié, Univ. Rennes (1980).Google Scholar
  17. [16]
    H. DELFS, M. KNEBUSCH: Semi-algebraic topology over a real closed field I: Paths and components in the set of rational points of an algebraic variety, Math. Z. 177 (1981), p. 107–129.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [17]
    H. DELFS, M. KNEBUSCH: Semi-algebraic topology over a real closed filed II: Basic theory of semi-algebraic spaces, Math. Z.Google Scholar
  19. [17b]
    H. DELFS, M. KNEBUSCH: On the homology of algebraic varieties over real closed fields, preprint.Google Scholar
  20. [18]
    S. LOJASIEWICZ: Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964), 449–474.MathSciNetzbMATHGoogle Scholar
  21. [19]
    S. LOJASIEWICZ: Ensembles semi-analytiques, multigraphié I.H.E.S., 1965.Google Scholar
  22. [20]
    J. MILNOR: Singular points of complex hypersurfaces, Annals of Math. Studies 61, Princeton University Press 1968.Google Scholar
  23. [21]
    S. PNEUMATIKOS: Introduction à la géométrie algébrique réelle, d’après un séminaire de J. Bochnak, Univ. Dijon, 1977.Google Scholar
  24. [22]
    T. RECIO: Actas de la IV reunion de Mathematicos de Expresion Latina, Mallorca, 1977.Google Scholar
  25. [23]
    A. SEIDENBERG: A new decision method for elementary algebra, Ann. of Math. 60 (1954), 365–374.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [24]
    A. TARSKI: A decision method for elementary algebra and geometry. Univ. of Calif. Press, 1951.Google Scholar
  27. [25]
    VARCHENKO: Equisingularités topologiques, Izvestia 36 (1972), 957–1019.Google Scholar
  28. [26]
    R. WALKER: Algebraic curves, Dover.Google Scholar
  29. [27]
    WALLACE: Linear sections of algebraic varieties, Indiana Univ. Math. J. 20 (1971), 1153–1162.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [28]
    H. WHITNEY: Elementary structures of real algebraic varieties, Annals of Math. 66 (1957), 545–556.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Michel Coste
    • 1
    • 2
    • 3
  1. 1.Université de Rennes IFrance
  2. 2.Université de NiameyFrance
  3. 3.NiameyNiger

Personalised recommendations