An introduction to Nash functions

  • J. Bochnak
  • Gustave Efroymson
Articles De Synthèse
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)


Prime Ideal Separation Theorem Real Algebraic Geometry Real Closure Real Closed Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-K]
    S. Akbulut, H. King, Real Algebraic Structures on Topological Spaces, Publ. Math. No. 53, I.H.E.S. 79–162, 1981.Google Scholar
  2. [B]
    G. Brumfiel, Partially Ordered Rings and Semi-algebraic Geometry, Cambridge University Press, London Mathematical Society Lecture Notes, Series 37, 1979.Google Scholar
  3. [B-E]
    J. Bochnak, G. Efroymson, Real algebraic geometry and the Hilbert 17th problem, Math. Ann. 251, 213–241 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B-K-S]
    J. Bochnak, W. Kucharz, M. Shoita, The divisor class groups of some rings of global real anaytic, Nash or rational regular functions, preprint.Google Scholar
  5. [C1]
    M. Coste, M.F. Coste-Roy, Topologies for real algebraic geometry, in Topos methods in geometry, Aarhus Universitet, pub. no. 30, 1979.Google Scholar
  6. [C2]
    M. Coste, preprint.Google Scholar
  7. [Co]
    P. Cohen, Decision procedure for real and P-adic fields, Comm. Pure and Appl. Math. 22, 131–151 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [E1]
    G. Efroymson, Substitution in Nash functions, Pac. J. of Math. 54, 101–112 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [E2]
    G. Efroymson, Nash rings on planar domains, Trans. A.M.S. 249, 435–445 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [E3]
    G. Efroymson, Extension of Nash functions, preprint.Google Scholar
  11. [E4]
    G. Efroymson, Extension of Nash functions on real curves, in preparation.Google Scholar
  12. [Ma1]
    L. Mahé, Separation des composantes réelles par les signatures d’espaces quadratiques, Comptes Rend. Acad. Sc. t. 292, 769–771 (1981).zbMATHGoogle Scholar
  13. [Ma2]
    L. Mahé, Signatures et composantes connexes, (to appear in Math. Annalen).Google Scholar
  14. [M]
    T. Mostowski, Some properties of the ring of Nash functions, Ann. Sc. Norm. Sup. Pisa C., Sci. III, 243–266 (1976).MathSciNetzbMATHGoogle Scholar
  15. [R]
    J. J. Risier, Sur l’anneau des fonctions de Nash globales, Ann. Sci. Ecole Norm sup. 8, 365–378 (1975).MathSciNetzbMATHGoogle Scholar
  16. [S]
    M. Shlota, Classification of Nash manifolds, preprint.Google Scholar
  17. [Tog1]
    A. Tognoll, Algebraic Geometry and Nash Functions, Inst. Naz. dialta Math., Institutiones Mathematicae, v. iii, Academic Press, 1978.Google Scholar
  18. [Tog2]
    A. Tognoll, Algebraic approximation of manifolds and spaces, Sem. Bourbaki vol. 1979/80, Expose 548, Lecture Notes in Math no. 842, Springer-Verlag, 1981.Google Scholar
  19. [T]
    J. A. Tougeron, Fonctions composees differentiables: cas algébrique, Ann. Inst. Fourier, 30 (4), 51–74 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • J. Bochnak
    • 2
  • Gustave Efroymson
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerque
  2. 2.Vrije Universiteit Subfaculteit WiskundeAmsterdamThe Netherlands

Personalised recommendations