Advertisement

Valuations and real places in the theory of formally real fields

  • Eberhard Becker
Articles De Synthèse
Part of the Lecture Notes in Mathematics book series (LNM, volume 959)

Keywords

Maximal Ideal Function Field Valuation Ring Real Field Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-S]
    Artin, E. and Schreier, O.: Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg 5 (1927), 85–99.MathSciNetCrossRefGoogle Scholar
  2. [Ba]
    Baer, R.: Über nicht-archimedisch geordnete Körper, Sitz. Ber. der Heidelberger Akad., 8. Abh. (1927), 3–13.zbMATHGoogle Scholar
  3. [B 1]
    Becker, E.: Hereditarily pythagorean fields and orderings of higher level. IMPA Lecture Notes, No. 29 (1978), Rio de Janeiro.Google Scholar
  4. [B 2]
    Becker, E.: Summen n-ter Potenzen in Körpern, J. reine angew. Mathematik 307/308 (1979), 8–30.Google Scholar
  5. [B 3]
    Becker, E.: Partial orders on a field and valuation rings, Comm. Alg. 7 (1979), 1933–1976.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [B 4]
    Becker, E.: Local global theorems for diagonal forms of higher degree, J. reine angew. Math. 318 (1980), 36–50.MathSciNetzbMATHGoogle Scholar
  7. [B 5]
    Becker, E.: The real holomorphy ring and sums of 2n-th powers, these Proceedings.Google Scholar
  8. [B-B]
    Becker, E. and Bröcker, L.: On the description of the reduced Witt ring, J. Alg. 52 (1978), 328–346.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [B-K]
    Becker, E. and Köpping, E.: Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg 46 (1977), 143–177.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Br 1]
    Bröcker, L.: Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann. 210 (1974), 233–256.MathSciNetCrossRefGoogle Scholar
  11. [Br 2]
    Bröcker, L.: Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149–163.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Br-M]
    Brown, R. and Marshall, M.: The reduced theory of quadratic forms, Rocky Mtn. J. Math. 11 (1981), 161–175.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Bru]
    Brumfiel, G.: Partially ordered rings and semi-algebraic geometry, Lect. Notes Ser. Lond. Math. Soc. 1979.Google Scholar
  14. [C-E-Pf]
    Cassels, J.W.S. and Ellison, W.J. and Pfister, A.: On sums of squares and on elliptic curves over function fields, J. Numb. Th. 3 (1971), 125–149.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [C]
    Chevalley, C.: Introduction to the theory of algebraic functions of one variable, Math. Surveys VI of the Amer. Math. Soc. 1951.Google Scholar
  16. [Dr]
    Dress, A.: On orderings and valuation of fields, Geometriae Ded. 6 (1977), 259–266.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [D1]
    Dubois, D.W.: A note on David Harrison’s theory of preprimes, Pac. J. Math. 21 (1967), 15–19.CrossRefzbMATHGoogle Scholar
  18. [D2]
    Dubois, D.W.: Second note on David Harrison’s theory of preprimes, Pac. J. Math. 24 (1968), 57–68.CrossRefzbMATHGoogle Scholar
  19. [D3]
    Dubois, D.W.: Infinite primes and ordered fields, Diss. Math. LXIX (1970).Google Scholar
  20. [D4]
    Dubois, D.W.: Real commutative algebra I. Places, Revista Matemática Hispana-Americana 39 (1979), 57–65.MathSciNetzbMATHGoogle Scholar
  21. [D-E]
    Dubois, D.W. and Efroymson, G.: Algebraic theory of real varieties, "Studies and Essays" presented to Yu-Why Chen on his 60th birthday (1970), 107–135.Google Scholar
  22. [G]
    Gilmer, R.: Multiplicative ideal theory, New York 1972.Google Scholar
  23. [Gr]
    Grothendieck, A.: Eléments de géométrie algébrique, Publ. Math. IHES 20 (1964).Google Scholar
  24. [J]
    Joly, J.R.: Sommes des puissances d-ièmes dans un anneau commutatif, Acta Arith. 17 (1970), 37–114.MathSciNetzbMATHGoogle Scholar
  25. [K]
    Kadison, R.V.: A representation theorem for commutative topological algebra, Mem. Amer. Math. Soc. 7 (1951).Google Scholar
  26. [Kn]
    Knebusch, M.: Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith. 24 (1973), 279–299.MathSciNetzbMATHGoogle Scholar
  27. [L]
    Lam, T.Y.: The algebraic theory of quadratic forms, Reading 1973.Google Scholar
  28. [Lg]
    Lang, S.: Algebra, Reading 1965.Google Scholar
  29. [M]
    Marshall, M.: Abstract Witt rings, Queen’s Paper in Pure and Applied Mathematics 57 (1980), Kingston.Google Scholar
  30. [Pf]
    Pfister, A.: Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116–132.MathSciNetCrossRefGoogle Scholar
  31. [Pr 1]
    Prestel, A.: Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133 (1973), 319–342.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [Pr 2]
    Prestel, A.: Lectures on formally real fields, IMPA Lecture Notes No. 22 (1975), Rio de Janeiro.Google Scholar
  33. [S]
    Siegel, C.L.: Darstellung total positiver Zahlen durch Quadrate, Math. Z. 11 (1921), 246–275.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Sch 1]
    Schülting, H.-W.: Über reelle Stellen eines Körpers und ihren Holomorphiering, Ph.D. thesis, Dortmund 1979.Google Scholar
  35. [Sch 2]
    Schülting, H.-W.: On real places of a field and their holomorphy ring, Comm. Alg., to appear.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Eberhard Becker
    • 1
  1. 1.Mathematisches InstitutUniversität DortmundDortmund 50

Personalised recommendations