Skip to main content

Projection methods for solving large sparse eigenvalue problems

  • Section A.3 Of General (A-λB)-Pencils
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 973))

Abstract

We present a unified approach to several methods for computing eigenvalues and eigenvectors of large sparse matrices. The methods considered are projection methods, i.e. Galerkin type methods, and include the most commonly used algorithms for solving large sparse eigenproblems like the Lanczos algorithm, Arnoldi's method and the subspace iteration. We first derive some a priori error bounds for general projection methods, in terms of the distance of the exact eigenvector from the subspace of approximation. Then this distance is estimated for some typical methods, particularly those for unsymmetric problems.

This work was supported in part by the U.S. Office of Naval Research under grant N000014-76-C-0277 and in part by NSF Grant MCS-8104874

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.E. ARNOLDI. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9:17–29, 1951.

    MathSciNet  MATH  Google Scholar 

  2. F. CHATELIN. Spectral approximation of linear operators. Academic Press, New York, 1983.

    MATH  Google Scholar 

  3. M. CLINT AND A. JENNINGS. The evaluation of eigenvalues and eigenvectors of real symmetric matrices by simultaneous iteration method. J. Inst. Math. Appl. 8:111–121,1971.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. KAHAN, B.N. PARLETT AND E. JIANG. Residual bounds on approximate eigensystems of nonnormal matrices. SIAM J. Numer. Anal. 19:470–484, 1982. (to appear).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. LANCZOS. An iteration method for the solution of the eigenvalue problem of linear differential and integral operator. J. Res. Nat. Bur. of Standards 45:255–282, 1950.

    Article  MathSciNet  Google Scholar 

  6. T.A. MANTEUFFEL. An iterative method for solving nonsymmetric linear systems with dynamic estimation of parameters. Technical Report UIUCDCS-75-758, University of Illinois at Urbana-Champaign, 1975. Ph.D. dissertation.

    Google Scholar 

  7. B.N. PARLETT. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, 1980.

    MATH  Google Scholar 

  8. B.N. PARLETT AND D. TAYLOR. A look ahead Lanczos algorithm for unsymmetric matrices. Technical Report PAM-43, Center for Pure and Applied Mathematics, 1981.

    Google Scholar 

  9. B.N. PARLETT AND W.G. POOLE. A geometric theory of the QR, LU and Power Iterations. SIAM J. of Num. Anal. 10 #2,:389–412, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  10. RIVLIN T.J. The Chebyshev Polynomials. J. Wiley and Sons Inc., New York, 1976.

    Google Scholar 

  11. Y. SAAD. Variations on Arnoldi's method for Computing Eigenelements of large unsymmetric matrices. Linear Algebra and it's Applications 34:269–295, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. SAAD. On the rates of convergence of the Lanczos and the block Lanczos methods. SIAM J. Numer. Anal. 17:687–706, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. SAAD. Krylov subspace methods for solving large unsymmetric linear systems. Mathematics of Computation 37:105–126, 1981

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. SAAD. The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal. 19:470–484, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. SAAD. Computation of eigenvalues of large Hermitian Matrices by Partitioning Techniques. Technical Report, INPG-University of Grenoble, 1974. Dissertation.

    Google Scholar 

  16. G.W. STEWART. Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices. Numer. Mat. 25:123–136, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.S. VARGA. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

  18. J. H. WILKINSON. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

  19. H. E. WRIGLEY. Accelerating the Jacobi method for solving simutaneous equations by Chebyshev extrapolation when the eigenvalues of the Iteration Matrix are complex. Computer Journal 6:169–176, 1963.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Bo Kågström Axel Ruhe

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Saad, Y. (1983). Projection methods for solving large sparse eigenvalue problems. In: Kågström, B., Ruhe, A. (eds) Matrix Pencils. Lecture Notes in Mathematics, vol 973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062098

Download citation

  • DOI: https://doi.org/10.1007/BFb0062098

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11983-8

  • Online ISBN: 978-3-540-39447-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics