Advertisement

Strongly nonlinear elliptic equations

  • J. R. L. Webb
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 665)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.E. BROWDER: Existence theorems for nonlinear partial differential equations. Proc. Sympos. Pure Math. 16 (1970), 1–60.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    F.E. BROWDER: Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms. Proc. Sympos. Pure Math. 23 (1973), 269–286.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    F.E. BROWDER-B.A. TON: Nonlinear functional equations in Banach spaces and elliptic super regularisation. Math. Z. 105 (1968), 177–195.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    D.E. EDMUNDS-V.B. MOSCATELLI-J.R.L. WEBB: Strongly nonlinear elliptic operators in unbounded domains. Publ. Math. Bordeaux 4 (1974), 6–32.MathSciNetMATHGoogle Scholar
  5. [5]
    P. HESS: On nonlinear mappings of monotone type with respect to two Banach spaces. J. Math. pures et appl. 52 (1973), 13–26.MathSciNetMATHGoogle Scholar
  6. [6]
    P. HESS: On a class of strongly nonlinear elliptic variational inequalities. Math. Ann. 211 (1974), 289–297.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. HESS: A strongly nonlinear elliptic boundary value problem. J. Math. Anal. Appl. 43 (1973), 241–249.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. LANDES: Quasilineare elliptische Differentialoperatoren mit star — kem Wachstum in den Termen höchster Ordnung. Math. Z., to appear.Google Scholar
  9. [9]
    C.G. SIMADER: Über schwache Lösungen des Dirichletproblems für streng nichtlineare elliptische Differentialgleichungen. Math. Z. 150 (1976), 1–26.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J.R.L. WEBB: On the Dirichlet problem for strongly nonlinear elliptic operators in unbounded domains. J. London Math. Soc. (2) 10 (1975), 163–170.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. R. L. Webb
    • 1
  1. 1.Department of MathematicsUniversity GardensGlasgow, W.2

Personalised recommendations