Über komplementäre Extremalprobleme bei nichtlinearen Randwertaufgaben

III. Numerische Behandlung nichtlinearer Randwertprobleme
Part of the Lecture Notes in Mathematics book series (LNM, volume 267)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DIAZ, J.B.: Upper and lower bounds for quadratic integrals, and at a point, for solutions of linear boundary value problems. In: Langer (Ed.), Boundary Problems in Differential Equations, University of Wisconsin Press, 1959, S. 47–83.Google Scholar
  2. [2]
    COURANT,R. und D.HILBERT: Methoden der Mathematischen Physik, Band I, 3.Auflage, Springer 1968.Google Scholar
  3. [3]
    NOBLE,B.: Complementary variational principles for boundary-value problems I. Basic principles. Report # 473, Mathematics Research Center, University of Wisconsin (1964).Google Scholar
  4. [4]
    RALL, L.B.: On complementary variational principles. J.Math. Anal. Applications 14, 174–184 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    ROBINSON,P.D.: Complementary variational principles. In: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications. Academic Press 1971, S. 507–576.Google Scholar
  6. [6]
    SEWELL, M.J.: Dual approximation principles. Phil.Trans.Roy.Soc. (London) 265, 319–351 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    ARTHURS,A.M.: Complementary variational principles. Clarendon Press 1970.Google Scholar
  8. [8]
    SHAMPINE, L.F.: Error bounds and variational methods for nonlinear boundary value problems. Numer.Math. 12, 410–415 (1968).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

There are no affiliations available

Personalised recommendations