Advertisement

Numerical treatment of hammerstein-equations by variational methods

III. Numerische Behandlung nichtlinearer Randwertprobleme
  • 407 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 267)

Abstract

Hammerstein-equations with positive and quasidefinite kernels are considered in one- and two-dimensional domains of ℝn and approximate solutions are constructed by means of spline-functions and finite elements. For these approximate solutions are given the proofs of existence, uniqueness and convergence and error estimates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Anselone, P.M.ed.: Nonlinear integral equations Madison: The University of Wisconsin Press 1964.Google Scholar
  2. [2]
    Atakišieva, R.H.: Stability of the Bubnov-Galerkin method for an equation with a completely continuous operator in a Banach space (Russian). Akad. Nauk Azerbaidžan. SSR Dokl. 22, 7–11 (1966).zbMATHGoogle Scholar
  3. [3]
    Birkhoff, G., Schultz, M.H., Varga, R.S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer.Math. 11, 232–256 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Bramble, J.H., Zlámal, M.: Triangular elements in the finite element method. Math.Comp. 24, 809–820 (1970).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Ciarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high order accuracy for nonlinear boundary value problems I. Numer.Math. 9, 394–430 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Ciarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high-order accuracy for nonlinear boundary value problems V. Numer.Math. 13, 51–77 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Ciarlet, P.G., Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method. Numer.Math. 17, 84–100 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Krasnosel'skii, M.: The convergence of Galerkin's method for non-linear integral equations (Russian). Dokl.Akad.Nauk SSSR 73, 1121 (1950).MathSciNetGoogle Scholar
  9. [9]
    Medvedev, V.A.: On the convergence of the Bubnov-Galerkin method. J.Appl.Math.Mech. 27, 1769–1774 (1964).zbMATHCrossRefGoogle Scholar
  10. [10]
    Mikhlin, S.G.: The numerical performance of variational methods. Groningen: Wolters-Noordhoff Publishing 1971.zbMATHGoogle Scholar
  11. [11]
    Mikhlin, S.G.: Variational methods in mathematical physics. New York: The Macmillan Company 1964.zbMATHGoogle Scholar
  12. [12]
    Mikhlin, S.G., Smolitskiy, K.L.: Approximate methods for solution of differential and integral equations. New York: American Elsevier Publishing Company Inc. 1967.zbMATHGoogle Scholar
  13. [13]
    Polskij, N.: A generalisation of the method of B.G. Galerkin. Dokl.Akad.Nauk SSSR 86, 469 (1952).Google Scholar
  14. [14]
    Schultz, M.H., Varga, R.S.: L-splines. Numer.Math. 10, 345–369 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Vainberg, M.M.: Variational methods for the study of nonlinear operators. San Francisco: Holden-Day, Inc. 1964.zbMATHGoogle Scholar
  16. [16]
    Vainikko, G.: Certain estimates for the error in the Bubnov-Galerkin method I (Russian). Tartu Riikl. Ül. Toimetised 150, 188–201 (1964).MathSciNetGoogle Scholar
  17. [17]
    Vainikko, G.: Certain estimates for the error in the Bubnov-Galerkin method II (Russian). Tartu Riikl.Ül. Toimetised 150, 202–215 (1964).MathSciNetGoogle Scholar
  18. [18]
    Varga,R.S.: The role of interpolation and approximation theory in variational and projectional methods for solving partial differential equations. IFIP Congress 1971.Google Scholar
  19. [19]
    Zlámal, M.: On the finite element method. Numer.Math. 12, 394–409 (1968).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

There are no affiliations available

Personalised recommendations