The hopscotch class of difference methods for partial differential equations

II. Näherungsverfahren Für nichtlineare Anfangswertaufgaben Und Anfangsrandwertaufgaben
Part of the Lecture Notes in Mathematics book series (LNM, volume 267)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. GORDON, P. (1965) SIAM J. Appli. Math. 13 667zbMATHCrossRefGoogle Scholar
  2. GOURLAY, A.R. (1970) J. Inst. Math. Appli. 6 375MathSciNetzbMATHCrossRefGoogle Scholar
  3. GOURLAY, A.R. (1971) Proc. Roy. Soc. Lond. A 323 219MathSciNetzbMATHCrossRefGoogle Scholar
  4. GOURLAY, A.R. and McGUIRE (1971) J.Inst. Math. Appli. 7 216MathSciNetzbMATHCrossRefGoogle Scholar
  5. GOURLAY, A.R. and MITCHELL, A.R. (1969) SIAM. J. Num. Anal. 6 37MathSciNetzbMATHCrossRefGoogle Scholar
  6. LAX, P.D. and WENDROFF, B. (1960) Comm. Pure. Appl. Math. 13 217MathSciNetzbMATHCrossRefGoogle Scholar
  7. McKEE, J.S. St.C.S., (1971) Private CommunicationGoogle Scholar
  8. MILLER, J.J.H. (1971) Lecture Notes in Math. 228 Springer Verlag 316.Google Scholar
  9. RICHTMYER, R.D. (1962) N.C A.R. Tech. Notes 63-2Google Scholar
  10. SCALA, S.M. and GORDON, P. (1966) Phys. Fluids. 9 1158zbMATHCrossRefGoogle Scholar
  11. SCALA, S.M. and GORDON, P. (1968) A.I.A.A. Jour. 6 815Google Scholar
  12. VARGA, R.S. (1962) Matrix Iterative Analysis, Prentice Hall.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

There are no affiliations available

Personalised recommendations