Advertisement

Estimates for fredholm eigenvalues based on quasiconformal mapping

  • Glenn Schober
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Ahlfors, "Remarks on the Neumann-Poincaré integral equation", Pacific J. Math. 2 (1952), 271–280.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D.Gaier, Konstruktive Methoden der konformen Abbildung, Springer Verlag, 1964.Google Scholar
  3. [3]
    R. Kühnau, "Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen", Math. Nachr. 48 (1971), 77–105.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    O.Lehto and K.Virtanen, Quasikonforme Abbildungen, Springer Verlag 1965.Google Scholar
  5. [5]
    C.Neumann, Untersuchungen über das logarithmische und Newton'sche Potential, Leipzig 1877.Google Scholar
  6. [6]
    M. Schiffer, "The Fredholm eigenvalues of plane domains", Pacific J. Math. 7 (1957), 1187–1225.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Schiffer, "Fredholm eigenvalues and conformal mapping", Rend. Mat. 22 (1963), 447–468.MathSciNetMATHGoogle Scholar
  8. [8]
    M. Schiffer, "A variational method for univalent quasiconformal mappings", Duke Math. J. 33 (1966), 395–412.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    M. Schiffer and G. Schober, "An extremal problem for the Fredholm eigenvalues", Arch. Rational Mech. Anal. 44 (1971), 83–92, and 46 (1972), 394.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    G. Schober, "On the Fredholm eigenvalues of plane domains", J. Math. Mech. 16 (1966), 535–541.MathSciNetMATHGoogle Scholar
  11. [11]
    G. Schober, "A constructive method for the conformal mapping of domains with corners", J. Math. Mech. 16 (1967), 1095–1115.MathSciNetMATHGoogle Scholar
  12. [12]
    G. Schober, "Neumann's lemma", Proc. AMS 19 (1968), 306–311.MathSciNetMATHGoogle Scholar
  13. [13]
    G. Schober, "Continuity of curve functionals and a technique in volving quasiconformal mapping", Arch. Rational Mech. Anal. 29 (1968), 378–389.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    G. Schober, "Semicontinuity of curve functionals", Arch. Rational Mech. Anal. 33 (1969), 374–376.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    G. Springer, "Fredholm eigenvalues and quasiconformal mapping", Acta Math. 111 (1964), 121–141.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Warschawski, "On the solution of the Lichtenstein-Gershgorin integral equation in conformal mapping: I.Theory", Nat. Bur. Standards Appl. Math. Ser. 42 (1955), 7–29.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Glenn Schober

There are no affiliations available

Personalised recommendations