Advertisement

Asymptotische Lösungen Von Funktionalgleichungen

  • Franz Pittnauer
Conference paper
  • 299 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Berg, L.: Asymptotische Lösungen für Operatorgleichungen. Zeitschr. Ang. Math. Mech. 45(1965) 333–352.CrossRefzbMATHGoogle Scholar
  2. [2]
    Van der Corput, J.G.: Introduction to the method of asymptotic functional relations. Journal d'Analyse Math. 14(1965) 67–78.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Entringer, R.C.: Functions and inverses of asymptotic functions. Amer. Math. Monthly 74(1967) 1095–1097.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Harris, W.A. Jr. and Sibuya, J.: General solution of nonlinear difference equations. Trans. AMS 115(1965) 62–75.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Harris, W.A.Jr. and Sibuya, J.: On asymptotic solutions of systems of nonlinear difference equations. J. Reine u. Ang. Math. 222(1966) 120–135.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Harris, W.A.Jr. and Tolle, J.W.: A nonlinear functional equation. Proc. United States — Japan Seminar on differential and functional equations; Univ. of Minnesota, 1967. New York-Amsterdam: W.A. Benjamin, Inc. 1967, S. 449–454.zbMATHGoogle Scholar
  7. [7]
    Kuczma, M.: Functional equations in a single variable. Warszawa: Polish Scientific Publ. 1968.zbMATHGoogle Scholar
  8. [8]
    Lublin, M.: On a class of nonlinear difference equations. Mat. Tidsskr. B(1946) 120–128.MathSciNetGoogle Scholar
  9. [9]
    Pittnauer, F.: Asymptotische Selbstentwicklungen von holomorphen Funktionen. Math. Zeitschr. 123(1971) 365–372.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Pittnauer, F.: Vorlesungen über asymptotische Reihen. Lecture Notes in Math. Nr. 301; Berlin-Heidelberg-New York: Springer, 1972.zbMATHGoogle Scholar
  11. [11]
    Rickstiņš, E.J. und Muriņa, M.J.: Über die asymptotische Darstellung impliziter Funktionen. (russ.) Lat. Mat. Ezegodnik, Riga 1(1965) 23–36.Google Scholar
  12. [12]
    Rozmus-Chmura, M.: Sur l'equation fonctionnelle φ(x+1)=f[φ(x)]. Mat. Vesnik 4(1967) 75–78.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Schmidt, H.: Über ganze Lösungen einer Klasse nichtlinearer Differenzengleichungen. Vortrag, Universität Dortmund, 23. 10. 72Google Scholar
  14. [14]
    Smajdor, W.: On the existence and uniqueness of analytic solutions of the functional equation φ(z)=h(z, φ[f(z)]). Ann. Polon. Math. 19(1967) 37–45.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Smajdor, W.: Analytic solutions of the equation φ(z)=h(z, φ[f(z)]) with right side contracting. Aequat. Math. 2(1969) 30–38.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Strodt, W. and Wright, R.K.: Asymptotic behavior of solution and adjunction fields for nonlinear first order differential equations. Memoirs of the AMS, No. 109, Providence, R.I. 1971.Google Scholar
  17. [17]
    Swanson, C.A. and Schulzer, M.: Asymptotic solutions of equations in Banach space. Canad. J. Math. 13(1961) 493–504.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Interscience Publ. 1965.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Franz Pittnauer

There are no affiliations available

Personalised recommendations