Advertisement

Eine Variante Des Zweischritt-Lax-Wendroff-Verfahrens

  • Hans-Werner Meuer
Conference paper
  • 307 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)

Zusammenfassung

Zur numerischen Behandlung des Anfangswertproblems in beliebig vielen Ortsveränderlichen für Systeme linearer hyperbolischer Differentialgleichungen 1. Ordnung wird in Abhängigkeit eines reellen Parameters eine Schar von Differenzenverfahren 2. Ordnung untersucht. Als Spezialfall ist die von Richtmyer angegebene Version des Lax-Wendroff-Verfahrens enthalten. Es wird ein Kriterium angegeben, das die Konvergenz der Verfahren garantiert und für eine gewisse Klasse auch physikalisch interessanter Probleme sogar notwendig für die Konvergenz ist. Der Zusammenhang zur Courant-Friedrichs-Lewy-Bedingung wird hergestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. Literaturverzeichnis

  1. [1]
    Courant, R., Friedrich, K.O., und Lewy, H. (1928): Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, S. 32MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Eilon, B. (1972): A note concerning the Two-Step Lax-Wendroff Method in Three Dimensions. Math. Comp. 26., P. 41MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Finck v. Finckenstein, K. Graf (1969): On the Numerical Treatment of Hyperbolic Differential Equations with Constant Coefficients, particuarly the n-Dimensional Wave Equation, Conference on the Numerical Solution of Differential Equations, P. 154, Lecture Notes in Mathematics 109, Springer, BerlinGoogle Scholar
  4. [4]
    Gourlay, A.R., and Morris, J.Ll. (1968): A Multistep Formulation of the Optimized Lax-Wendroff Method for Nonlinear Hyperbolic Systems in Two Space Variables. Math. Comp. 22, P. 715MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    John, F. (1967): Lectures on Advanced Numerical Analysis. Gordon and Breach, New YorkGoogle Scholar
  6. [6]
    Lax, P.D., and Nirenberg, L. (1966): On Stability for Difference Schemes; a Sharp Form of Garding's Inequality. Comm. Pure Appl. Math. Vol. 19, P. 473MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Lax, P.D., and Wendroff, B. (1964): Difference Schemes for Hyperbolic Equations with High Order of Accuracy. Comm. Pure Appl. Math., Vol. 17, P. 381MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Meuer, H.W. (1972): Zur numerischen Behandlung von Systemen hyperbolischer Anfangswertprobleme in beliebig vielen Ortsveränderlichen mit Hilfe von Differenzenverfahren. KFA-Bericht JÜL-861-MAGoogle Scholar
  9. [9]
    von Neumann, J., und Richtmyer, R.D. (1950): A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Appl. Phys. 21, P. 232MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Richtmyer, R.D. (1962): A Survey of Difference Methods for Non-Steady Fluid Dynamics. NCAR Technical Notes 63-2, Boulder Col.Google Scholar
  11. [11]
    Richtmyer, R.D., and Morton, K.W. (1967): Difference Methods for Initial Value Problems. Wiley (Interscience), New YorkzbMATHGoogle Scholar
  12. [12]
    Rubin, E.L., and Preiser, S. (1970): Three-dimensional second-order accurate difference schemes for discontinous hydrodynamic flows. Math. Comp. 24, P. 57MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Rusanov, V.V. (1962): The Calculation of the Interaction of Non-Stationary Shock Waves and Obstacles. USSR Comp. Math. and Math. Phys. 2, P. 304CrossRefGoogle Scholar
  14. [14]
    Strang, G. (1968): On the Construction and Comparison of Difference Schemes. Siam J. Num. Anal., Vol. 5, P. 506MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Tyler, L.D. (1971): Heuristic Analysis of Convective Finite Difference Techniques. Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, P. 314, Lecture Notes in Physics 8, Springer, BerlinCrossRefGoogle Scholar
  16. [16]
    Wendroff, B. (1968): Well posed problems and stable difference operators. Siam J. Num. Anal., Vol. 5, P. 71MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Wilson, J. C.: Stability of Richtmyer Type Difference Schemes in any Number of Space Variables and their Comparision with Multistep Strang Schemes. to appearGoogle Scholar
  18. [18]
    Yamaguti, M. (1967): Some Remarks on the Lax-Wendroff scheme for non-symmetric hyperbolic systems. Math. Comp. 21, P. 611MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Yamaguti, M. (1970): On the pseudo difference schemes, Proceedings of the International Conference on Functional Analysis and Related Topics. Tokyo, April 1969, University of Tokyo Press, Tokyo 1970zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hans-Werner Meuer

There are no affiliations available

Personalised recommendations