One-step methods with adaptive stability functions for the integration of differential equations

  • P. J. van der Houwen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calahan, D.A. [1968]: A stable, accurate method of numerical integration for non-linear systems, Proc. IEEE 56, 744.CrossRefGoogle Scholar
  2. Dahlquist, G.G. [1963]: A special stability problem for linear multistep problems, BIT 3, 27.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Houwen, P.J. van der [1972a]: Explicit and semi-implicit Runge-Kutta formulas for the integration of stiff equations, Report TW 132/72, Mathematisch Centrum, Amsterdam. [1972b]: Explicit Runge-Kutta formulas with increased stability boundaries, Numerische Mathematik (to appear).Google Scholar
  4. Lapidus, L. and J.H. Seinfeld [1971]: Numerical solution of ordinary differential equations, Academic Press, New York.zbMATHGoogle Scholar
  5. Liniger, W. and R.A. Willoughby [1970]: Efficient integration methods for stiff systems of ordinary differential equations, SIAM J., Numer. Anal. 7, 47.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Robertson, H.H. [1967]: The solution of a set of reaction rate equations in "Numerical Analysis", (J. Walsh, ed.), Thompson Book Co., Washington.Google Scholar
  7. Rosenbrock, H.H. [1963]: Some general implicit processes for the numerical solution of differential equations, Comput. J. 5, 329.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • P. J. van der Houwen

There are no affiliations available

Personalised recommendations