Advertisement

Numerical calculation of primary bifurcation points of the hammerstein operator

  • Jörg Hertling
Conference paper
  • 309 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Berger, M. S.: A bifurcation theory for nonlinear elliptic partial differential equations and related systems. Keller, J. B.; Antmann, S. (ed.): Bifurcation theory and nonlinear eigenvalue problems. W. A. Benjamin, Inc., New York-Amsterdam, 1969.Google Scholar
  2. [2]
    Birkhoff, G.; de Boor, C.; Swartz, B.; Wendroff, B.: Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal. 3 (1966), 188–203.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Ciarlet, P. G.; Schultz, M. H.; Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. III. Eigenvalue problems. Numer. Math. 12 (1968), 120–133.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Jerome, J.; Pierce, J.: On spline functions determined by singular self-adjoint differential operators. J. Approx. Theory 5 (1972), 15–40.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Jerome, J. W.; Varga, R. S.: Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems. Greville, T. N. E. (ed.): Theory and applications of spline functions. Academic Press, New York-London, 1969.Google Scholar
  6. [6]
    Krasnosel'skii, M. A.: Topological methods in the theory of nonlinear integral equations. Pergamon Press, Oxford-London-New York-Paris, 1964.Google Scholar
  7. [7]
    Pimbley, G. H. Jr.: Eigenfunction branches of nonlinear operators and their bifurcations. Lecture Notes in Mathematics 104. Springer-Verlag, Berlin-Heidelberg-New York, 1969.CrossRefzbMATHGoogle Scholar
  8. [8]
    Schultz, M. H.; Varga, R. S.: L-splines. Numer. Math. 10 (1967), 345–369.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Jörg Hertling

There are no affiliations available

Personalised recommendations