Approximate solutions of functional differential equations

  • Myron S. Henry
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allinger, G., Spline approximate solutions to linear initial value problems, Thesis (Ph.D.), University of Utah, Salt Lake City, Utah, 1972.Google Scholar
  2. 2.
    Allinger, G., and S. E. Weinstein, Spline approximate solutions to initial value problems, to appear.Google Scholar
  3. 3.
    Bacopoulous, A., and A. G. Kartsatos, On polynomials approximating solutions of nonlinear differential equations, Pacific J. Math., Vol.40, No. 1, 1972, 1–5.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Henry, M. S., Best approximate solutions of nonlinear differential equations, J. Approx. Theory, 1(1970), 59–65.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Huffstutler, R. G., and F. M. Stein, The approximate solution of certain nonlinear differential equations, Proc. Amer. Math. Soc., Vol. 19, 1968, 998–1002.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    ____, The approximate solution of \(\dot y\)= F(x,y), Pacific J. Math. (1968), 283–289.Google Scholar
  7. 7.
    Loscalzo, F. R. and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer. Anal., Vol. 4, No. 3, 1967, 433–445.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Oberg, R. J., On the local existence of solutions of certain functional differential equations, Proc. Amer. Math. Soc., Vol. 20, No. 2, 1969, 295–302.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ryder, G. H., Solutions of functional differential equations, Amer. Math. Monthly, Vol. 76, No. 9, 1969, 1031–1033.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Scott, P. D., and J. S. Thorp, A descent algorithm for linear continuous Chebyshev approximation, Journal of Approx. Theory, Vol. 6, No. 3, 1972, 231–241.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Myron S. Henry

There are no affiliations available

Personalised recommendations