Zur Berechnung Periodischer Lösungen bei Parabolischen Randwertproblemen

  • Eckart Gekeler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greenspan, D., und Parter, S. V.: Mildly nonlinear elliptic partial differential equations and their numerical solution, II. Numer. Math. 7, 129–146 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Greenspan, D.: Introductory Numerical Analysis of Elliptic Boundary Value Problems. Harper-Row, New York-London 1965.zbMATHGoogle Scholar
  3. 3.
    Kolesov, Ju. S.: Periodic solutions of quasilinear parabolic equations of second order. Transact. Moscow Math. Soc. 21, 114–146 (1970).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kružkov, S. N.: Periodic solutions of nonlinear second order parabolic equations (russ.). Differencial'nye Uravnenija 6, 731–740 (1970).Google Scholar
  5. 5.
    Moré, J. J., und Rheinboldt, W. C.: On P-and S-functions and related classes of n-dimensional nonlinear mappings. Techn. Report 70-120, University of Maryland ( 1970.Google Scholar
  6. 6.
    Ortega, J. M., und Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York-London 1970.zbMATHGoogle Scholar
  7. 7.
    Osborne, M. R.: A note on the numerical solution of a periodic parabolic problem. Numer. Math. 7, 155–158 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Šmulev, I. I.: Periodic solutions of the first boundary problem for parabolic equations. AMS Translations (2) 79, 215–229 (1969).zbMATHGoogle Scholar
  9. 9.
    Tee, G. J.: An application of p-cyclic matrices. Numer. Math. 6, 143–158 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall Englewood Cliffs, N. J., 1962.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Eckart Gekeler

There are no affiliations available

Personalised recommendations