Advertisement

Differenzenverfahren Zur Lösung Quasilinearer Diffusionsgleichungen in Zylindersymmetrie

  • Karl Graf Finck von Finckenstein
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Albasiny, E.L.: On the numerical solution of a cylindrical heat conduction problem. Quart. Journ. Mech. Appl. Math. 13 (1960), 374–384MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Courant, R., E. Isaacson, M. Rees: On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math. 5 (1952), 243–255MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Eisen, D.: Stability and convergence of finite difference schemes with singular coefficients. SIAM Journ. on Num. Analysis 3 (1966), 545–552MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Eisen, D.: On the numerical solution of ut = urr + 2t−4 ur. Num. Math. 10 (1967), 397–409MathSciNetCrossRefGoogle Scholar
  5. [5]
    Eisen, D.: Consistency conditions for difference schemes with singular coefficients. Math. of Comp. 22 (1968), 347–351MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    v. Finckenstein, K., K.v. Hagenow: Konvergenz eines Differenzenverfahrens für quasilineare parabolische Anfangs-Randwertprobleme in Zylindersymmetrie. Erscheint in Num. Math. 1973.Google Scholar
  7. [7]
    v. Finckenstein, K., K.v. Hagenow: Über explizite Differenzenmethoden zur Lösung nichtlinarer Diffusionsgleichungen in Zylindersymmetrie. Meth. u. Verf. der Mathem. Physik, B I Hochschulskripten 1972.Google Scholar
  8. [8]
    Gorenflo, R.: Differenzenschemata monotoner Art für schwach gekoppelte Systeme parabolischer Differentialgleichungen. Computing 8 (1971), 343–362MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Kolar, W.: Über allgemeine monotone Differenzenverfahren zur Lösung des ersten Randwertproblems bei parabolischen Differentialgleichungen. Dissert. RWTH Aachen 1970; Bericht Jül.-672-MA der K.F.A. JülichGoogle Scholar
  10. [10]
    Kreiss, H.O.: On the numerical solution of the spherically symmetric diffusion equation. Num. Math. 12 (1968), 223–225MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Mitchell, A.R., R.P. Pearce: Explicit difference methods for solving the cylindrical heat conduction equation. Math. of Comp. 17 (1963), 426–432.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Karl Graf Finck von Finckenstein

There are no affiliations available

Personalised recommendations