Spezielle interpolationsquadraturen vom gauss'schen typ

  • Hermann Engels
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)


GAUSS' quadrature procedure, based upon the zeros of LEGENDRE-polynomials as nodes, may be also developed by integration of an HERMITE-interpolation-polynomial involving first derivatives of the integrand at the same nodes. All the weights of these derivatives in the resulting quadrature formula vanish, while the weights of the function values are positive. After building up a more general HERMITE-interpolation-operator (cf. |6|, |8|, |10|) general quadratures are obtained by integration. They are defined as general GAUSS-type-quadratures if and only if all weights of the derivatives of the quadrature vanish. As a consequence the weights of the function values of such a quadrature are shown to be positive. Besides the ordinary GAUSS-quadrature and variants with weight-functions within the integrand there ist not only the possibility of constructing arbitrarily sets of new GAUSS-type-quadratures but also some known quadrature-procedures are shown to be of this type, e. g. WILF-quadrature (cf. |18|, |4|) and a procedure due to MARTENSEN (cf. |15|). For the WILF-quadrature new aspects for the numerical determination of nodes and weights follow from this new point of view. It is well known that this problem is very ill conditioned. The usual GAUSS-quadrature surely is contained as a special case for the various weight-functions. It should be mentioned, that the general interpolating operator yields also interesting results in numerical differentiation (cf. |9|).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ASKEY, R.: Positivity of COTES numbers for some JACOBI abscissas. NUMERISCHE MATHEMATIK 19 (1972) S. 46–48.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    ASKEY, R.; FITCH, J.: Positivity of the COTES numbers for some ultraspherical abscissas. SIAM J. NUMER. ANAL. 5 (1968) S. 199–201.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    DAVIS, P. J.: Interpolation and Approximation. BLAISDELL Publ. Comp. 1965.Google Scholar
  4. 4.
    ECKHARDT, U.: Einige Eigenschaften WILF'scher Quadraturformeln. NUMERISCHE MATHEMATIK 12 (1968) S. 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    ENGELS, H.: Über allgemeine GAUSS'sche Quadraturen. COMPUTING (im Druck).Google Scholar
  6. 6.
    ENGELS, H.: Über einige allgemeine lineare Interpolationsoperatoren und ihre Anwendung auf Quadratur und RICHARDSON-Extrapolation. Berichte der KFA Jülich: Jül-831-MA (1972).Google Scholar
  7. 7.
    ENGELS, H.: RUNGE-KUTTA-Verfahren auf der Basis von Quadraturformeln. Sammelband über die Tagung ‘Numerische Methoden bei Differential-gleichungen', 4. 6.–10. 6. 1972 in OBERWOLFACH, Ltg.: J. ALBRECHT und L. COLLATZ. Verlag BIRKHÄUSER (im Druck).Google Scholar
  8. 8.
    ENGELS, H.: Eine Verallgemeinerung von NEWTON-Interpolation und NEVILLE-AITKEN-Algorithmus und deren Anwendung auf die RICHARDSON-Extrapolation. COMPUTING (im Druck).Google Scholar
  9. 9.
    ENGELS, H.: Über ein numerisches Differentiationsverfahren mit ableitungsfreien Fehlerschranken. ZAMM (im Druck).Google Scholar
  10. 10.
    ENGELS, H.: Allgemeine interpolierende Splines vom Grade 3. COMPUTING (im Druck).Google Scholar
  11. 11.
    FEJER, L.: Mechanische Quadraturen mit positiven COTES'schen Zahlen. MATH. ZEITSCHRIFT 37 (1933) S. 289–309.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    HÄMMERLIN, G.: Zur numerischen Integration periodischer Funktionen. ZAMM 39 (1959) S. 80–82.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    LOCHER, F.: Norm bounds of quadrature processes. (Manuskript) erscheint demnächst.Google Scholar
  14. 14.
    LOCHER, F.: Positivität bei Quadraturformeln. Habilitationsschrift, TÜBINGEN 1971.Google Scholar
  15. 15.
    MARTENSEN, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM 48 (1968) T83–T85.MathSciNetzbMATHGoogle Scholar
  16. 16.
    SZEGÖ, G.: Asymptotische Entwicklungen der JACOBI'schen Polynome. Schriften Königsb. Gelehrten Ges. nat. wiss. Kl. 10 (1933) S. 35–112.Google Scholar
  17. 17.
    SZEGÖ, G.: Orthogonal polynomials. Amer. Math. Soc. Colloq. Pub. 23, Providence, R. I. (1967).zbMATHGoogle Scholar
  18. 18.
    WILF, H. S.: Exactness conditions in numerical quadrature. NUMERISCHE MATHEMATIK 6 (1964) S. 315–319.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hermann Engels

There are no affiliations available

Personalised recommendations