Advertisement

The approximation of solutions of nonlinear elliptic boundary value problems having several solutions

  • E. L. Allgower
  • M. M. Jeppson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agmon, S., Lectures on Elliptic Boundary Value Problems, van Nostrand, Princeton, 1965.zbMATHGoogle Scholar
  2. [2]
    Alexandroff, P.S., Combinatorial Topology, vol. 1, Graylock Press, Rochester, New York, 1956.zbMATHGoogle Scholar
  3. [3]
    Allgower, E.L., Guenther, R.B., A Functional Analytic Approach to the Numerical Solution of Nonlinear Elliptic Equations, Comp. 2, 25–33, (1967).MathSciNetzbMATHGoogle Scholar
  4. [4]
    Allgower, E.L., Jeppson, M.M., Numerical Solution of Nonlinear Boundary Value Problems with Several Solutions, (to appear).Google Scholar
  5. [5]
    Allgower, E.L., Keller, C.L., A Search for a Sperner Simplex, Computing, 8, 157–165, (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Allgower, E.L., Keller, C.L., Reeves, T.E., A Program for the Numerical Approximation of a Fixed Point of an Arbitrary Continuous Mapping of the n-Cube or n-Simplex into Itself, Aerospace Research Laboratories Report 71-0257, Wright Patterson Air Force Base, Ohio, November 1971.Google Scholar
  7. [7]
    Batschelet, E., Ueber die numerische Auflösung von Randwertproblemen bei elliptischen partiellen Differentialgleichungen, Z. Angew. Math. Phys. 3, 165–193 (1952).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Bramble, J.H., Hubbard, B.E., On the Formulation of Finite Difference Analogues of the Dirichlet Problem for Poisson's Equation, Numerische Math. 4, 313–327, (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Bramble, J.H., Hubbard, B.E., A Priori Bounds on the Discretization Error in the Numerical Solution of the Dirichlet Problem, Contributions to Diff.Eqs. 2, 229–252, (1963).MathSciNetzbMATHGoogle Scholar
  10. [10]
    Bramble, J.H., Hubbard, B.E., New Monotone Type Approximations for Elliptic Problems, Math. Comp. 18, 349–367, (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Courant, R., Hilbert, D., Methods of Mathematical Physics, vol. II, Wiley Interscience, New York, 1962.zbMATHGoogle Scholar
  12. [12]
    Forsythe, G.E., Wasow, W.R., Finite Difference Methods for Partial Differential Equations, Wiley and Sons, 1960.Google Scholar
  13. [13]
    Fujita, H., On the Nonlinear Equations δu+eu=0 and ∂v/∂t=Δv+ev, Bull. Amer. Math. Soc. 75, 132–135, (1969).MathSciNetCrossRefGoogle Scholar
  14. [14]
    Gelfand, I.M., Some Problems in the Theory of Quasi-linear Equations, Uspehi Mat. Nauk. 14, (1959), Engl. transl., Amer. Math. Soc. Transl. (2), 29, (1963), 295–381.Google Scholar
  15. [15]
    Greenspan, D., Parter, S.V., Mildly Nonlinear Elliptic Partial Differential Equations and their Numerical Solution II, Numerische Math. 7, 129–146, (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Jeppson, M.M., A Search for the Fixed Points of a Continuous Mapping, SIAM (1972), Mathematical Topics in Economic Theory and Computation.Google Scholar
  17. [17]
    Keller, H.B., Cohen, D.S., Some Positone Problems Suggested by Nonlinear Heat Generation, J. Math. Mech. 16, 1361–1376, (1967).MathSciNetzbMATHGoogle Scholar
  18. [18]
    Laasonen, P., On the Solution of Poisson's Difference Equation, ACM Jour. 5, 370–382 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    McShane, E.J., Extension of Range of Functions, Bull. AMS, 40, 837–842, (1934).MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Miranda, C., Partial Differential Equations of Elliptic Type, Springer, Berlin, 1970.CrossRefzbMATHGoogle Scholar
  21. [21]
    Parter, S.V., Mildly Nonlinear Elliptic Partial Differential Equations and their Numerical Solution I, Numerische Math. 7, 113–128, (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Parter, S.V., Maximal Solutions of Mildly Nonlinear Elliptic Equations, Numerical Solution of Nonlinear Differential Equations, ed. D. Greenspan, Wiley and Sons, (1966), New York.Google Scholar
  23. [23]
    Powell, M.J.D., A Fortran Subroutine for Solving Systems of Non-linear Algebraic Equations, Numerical Methods for Nonlinear Algebraic Equations, ed. P. Rabinowitz, Gordon and Breach, (1970), New York.Google Scholar
  24. [24]
    Simpson, R.B., Finite Difference Methods for Mildly Nonlinear Eigenvalue Problems, SIAM J. Num. Anal. 8, 190–211, (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Simpson, R.B., Existence and Error Estimates for Solutions of a Discrete Analog of Nonlinear Eigenvalue Problems, Mathematics of Computation 26, 359–375 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Simpson, R.B., Cohen, D.S., Positive Solutions of Nonlinear Elliptic Eigenvalue Problems, SIAM J. Numer. Anal. 8, 190–211, (1971).MathSciNetCrossRefGoogle Scholar
  27. [27]
    Smirnov, W.I., Lehrgang der Höheren Mathematik, Teil V, VEB Deutscher Verlag der Wissenschaften, 1961.Google Scholar
  28. [28]
    Stummel, F., Discrete Convergence of Differentiable Mappings, (these proceedings).Google Scholar
  29. [29]
    Varga, R.S., Matrix Interative Analysis, Prentice Hall, (1962), Englewood Cliffs.Google Scholar
  30. [30]
    Wigley, N.M., On the Convergence of Discrete Approximations to Solutions of Mixed Boundary Value Problems, SIAM J. Num. Anal. 3, 372–382, (1966).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. L. Allgower
  • M. M. Jeppson

There are no affiliations available

Personalised recommendations