The approximation of solutions of nonlinear elliptic boundary value problems having several solutions

  • E. L. Allgower
  • M. M. Jeppson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 333)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agmon, S., Lectures on Elliptic Boundary Value Problems, van Nostrand, Princeton, 1965.zbMATHGoogle Scholar
  2. [2]
    Alexandroff, P.S., Combinatorial Topology, vol. 1, Graylock Press, Rochester, New York, 1956.zbMATHGoogle Scholar
  3. [3]
    Allgower, E.L., Guenther, R.B., A Functional Analytic Approach to the Numerical Solution of Nonlinear Elliptic Equations, Comp. 2, 25–33, (1967).MathSciNetzbMATHGoogle Scholar
  4. [4]
    Allgower, E.L., Jeppson, M.M., Numerical Solution of Nonlinear Boundary Value Problems with Several Solutions, (to appear).Google Scholar
  5. [5]
    Allgower, E.L., Keller, C.L., A Search for a Sperner Simplex, Computing, 8, 157–165, (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Allgower, E.L., Keller, C.L., Reeves, T.E., A Program for the Numerical Approximation of a Fixed Point of an Arbitrary Continuous Mapping of the n-Cube or n-Simplex into Itself, Aerospace Research Laboratories Report 71-0257, Wright Patterson Air Force Base, Ohio, November 1971.Google Scholar
  7. [7]
    Batschelet, E., Ueber die numerische Auflösung von Randwertproblemen bei elliptischen partiellen Differentialgleichungen, Z. Angew. Math. Phys. 3, 165–193 (1952).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Bramble, J.H., Hubbard, B.E., On the Formulation of Finite Difference Analogues of the Dirichlet Problem for Poisson's Equation, Numerische Math. 4, 313–327, (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Bramble, J.H., Hubbard, B.E., A Priori Bounds on the Discretization Error in the Numerical Solution of the Dirichlet Problem, Contributions to Diff.Eqs. 2, 229–252, (1963).MathSciNetzbMATHGoogle Scholar
  10. [10]
    Bramble, J.H., Hubbard, B.E., New Monotone Type Approximations for Elliptic Problems, Math. Comp. 18, 349–367, (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Courant, R., Hilbert, D., Methods of Mathematical Physics, vol. II, Wiley Interscience, New York, 1962.zbMATHGoogle Scholar
  12. [12]
    Forsythe, G.E., Wasow, W.R., Finite Difference Methods for Partial Differential Equations, Wiley and Sons, 1960.Google Scholar
  13. [13]
    Fujita, H., On the Nonlinear Equations δu+eu=0 and ∂v/∂t=Δv+ev, Bull. Amer. Math. Soc. 75, 132–135, (1969).MathSciNetCrossRefGoogle Scholar
  14. [14]
    Gelfand, I.M., Some Problems in the Theory of Quasi-linear Equations, Uspehi Mat. Nauk. 14, (1959), Engl. transl., Amer. Math. Soc. Transl. (2), 29, (1963), 295–381.Google Scholar
  15. [15]
    Greenspan, D., Parter, S.V., Mildly Nonlinear Elliptic Partial Differential Equations and their Numerical Solution II, Numerische Math. 7, 129–146, (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Jeppson, M.M., A Search for the Fixed Points of a Continuous Mapping, SIAM (1972), Mathematical Topics in Economic Theory and Computation.Google Scholar
  17. [17]
    Keller, H.B., Cohen, D.S., Some Positone Problems Suggested by Nonlinear Heat Generation, J. Math. Mech. 16, 1361–1376, (1967).MathSciNetzbMATHGoogle Scholar
  18. [18]
    Laasonen, P., On the Solution of Poisson's Difference Equation, ACM Jour. 5, 370–382 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    McShane, E.J., Extension of Range of Functions, Bull. AMS, 40, 837–842, (1934).MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Miranda, C., Partial Differential Equations of Elliptic Type, Springer, Berlin, 1970.CrossRefzbMATHGoogle Scholar
  21. [21]
    Parter, S.V., Mildly Nonlinear Elliptic Partial Differential Equations and their Numerical Solution I, Numerische Math. 7, 113–128, (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Parter, S.V., Maximal Solutions of Mildly Nonlinear Elliptic Equations, Numerical Solution of Nonlinear Differential Equations, ed. D. Greenspan, Wiley and Sons, (1966), New York.Google Scholar
  23. [23]
    Powell, M.J.D., A Fortran Subroutine for Solving Systems of Non-linear Algebraic Equations, Numerical Methods for Nonlinear Algebraic Equations, ed. P. Rabinowitz, Gordon and Breach, (1970), New York.Google Scholar
  24. [24]
    Simpson, R.B., Finite Difference Methods for Mildly Nonlinear Eigenvalue Problems, SIAM J. Num. Anal. 8, 190–211, (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Simpson, R.B., Existence and Error Estimates for Solutions of a Discrete Analog of Nonlinear Eigenvalue Problems, Mathematics of Computation 26, 359–375 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Simpson, R.B., Cohen, D.S., Positive Solutions of Nonlinear Elliptic Eigenvalue Problems, SIAM J. Numer. Anal. 8, 190–211, (1971).MathSciNetCrossRefGoogle Scholar
  27. [27]
    Smirnov, W.I., Lehrgang der Höheren Mathematik, Teil V, VEB Deutscher Verlag der Wissenschaften, 1961.Google Scholar
  28. [28]
    Stummel, F., Discrete Convergence of Differentiable Mappings, (these proceedings).Google Scholar
  29. [29]
    Varga, R.S., Matrix Interative Analysis, Prentice Hall, (1962), Englewood Cliffs.Google Scholar
  30. [30]
    Wigley, N.M., On the Convergence of Discrete Approximations to Solutions of Mixed Boundary Value Problems, SIAM J. Num. Anal. 3, 372–382, (1966).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. L. Allgower
  • M. M. Jeppson

There are no affiliations available

Personalised recommendations