Advertisement

Multiple solutions of nonlinear partial differential equations

  • Donald S. Cohen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 322)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, D. S., Multiple solutions and periodic oscillations in nonlinear diffusion processes, to appear.Google Scholar
  2. 2.
    Hlavacek, V., Kubicek, M., and Jelinek, J., Modeling of chemical reactors-XVIII: Stability and oscillatory behavior of the CSTR, Chem. Eng. Sci., 25 (1970) 1441–1461.CrossRefGoogle Scholar
  3. 3.
    McGowin, C. R., and Perlmutter, D., D., Tubular reactor steady state and stability characteristics, AIChE Journal, 17 (1971) 831–849.CrossRefGoogle Scholar
  4. 4.
    Poore, A. B., Stability and bifurcation phenomena in chemical reactor theory, Ph.D. thesis, California Institute of Technology, 1972.Google Scholar
  5. 5.
    Poore, A. B., Multiplicity, stability, and bifurcation of periodic solutions in problems arising from chemical reactor theory, to appear.Google Scholar

References

  1. 1.
    Cohen, D.S., Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory, SIAM J. Appl. Math., 20 (1971) 1–13.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cohen, D.S., Multiple solutions of singular perturbation problems, SIAM J. Math. Anal., 3 (1972) 72–82.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cohen, D.S. and Poore, A. B., Multiple stable and unstable periodic solutions of the nonlinear equations of chemical reactor theory, to appear.Google Scholar
  4. 4.
    Cole, J. D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Co., Waltham, Mass. 1968.MATHGoogle Scholar
  5. 5.
    Hlavacek, V., Kubicek, M., and Jelinek, J., Modeling of chemical reactors-XVII: Stability and oscillatory behavior of the CSTR, Chem. Eng. Sci., 25 (1970) 1441–1461.CrossRefGoogle Scholar
  6. 6.
    Hlavacek, V., and Hofmann, H., Modeling of chemical reactors-XIX: Transient axial heat and mass transfer in tubular reactors. The stability considerations-I. Chem. Eng. Sci.,25 (1970) 1517–1526.CrossRefGoogle Scholar
  7. 7.
    Hlavacek, V., Hofmann, H., and Kubicek, M., Modeling of chemical reactors-XXIV: Transient axial heat and mass transfer in tubular reactors. The stability considerations-II. Chem. Eng. Sci., 26 (1971) 1629–1634.CrossRefGoogle Scholar
  8. 8.
    Kevorkian, J., The two variable expansion procedure for the approximate solution of certain nonlinear differential equations. Lecture in Appl. Math., No. 7, Space Math., Part III, Amer. Math. Soc., 1966. Also in Proc. Yale Univ. Summer Institute on Dynamical Astronomy.Google Scholar
  9. 9.
    Lindburg, R. C., and Schmitz, R. A., Dynamics of heterogeneous reaction at a stagnation point: Numerical study of nonlinear transient effects, Int. J. Heat Mass Transfer, 14 (1971) 718–721.CrossRefGoogle Scholar
  10. 10.
    Matkowsky, B. J., A simple nonlinear dynamic stability problem, Bulletin Amer. Math. Soc., 76 (1970) 620–625.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    McGowin, C. R., and Perlmutter, D. D., Tubular reactor steady state and stability characteristics, AIChE Journal, 17 (1971) 831–849.CrossRefGoogle Scholar
  12. 12.
    Poore, A. B., Stability and bifurcation phenomena in chemical reactor theory, Ph.D. thesis, California Institute of Technology, 1972.Google Scholar
  13. 13.
    Poore, A. B., Multiplicity, stability and bifurcation of periodic solutions in problems arising from chemical reactor theory, to appear.Google Scholar
  14. 14.
    Winegardner, D. K., and Schmitz, R. A., Dynamics of heterogeneous reaction at a stagnation point, AIAA Journal, 5 (1967) 1589–1595.CrossRefGoogle Scholar

References

  1. 1.
    Cohen, D. S., and Keller, H. B., Multiple solutions of the nonlinear boundary value problems of tubular chemical reactors with recycle, to appear.Google Scholar
  2. 2.
    Cohen, D. S., Multiple solutions and periodic oscillations in nonlinear diffusion processes, to appear.Google Scholar
  3. 3.
    Cohen, D. S., Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory, SIAM J. Appl. Math., 20 (1971) 1–13.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cole, J. D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Co., Waltham, Mass., 1968.MATHGoogle Scholar

References

  1. 1.
    Cohen, D. S., Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory, SIAM J. Appl. Math., 20 (1971) 1–13.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cohen, D. S., Multiple solutions of singular perturbation problems, SIAM J. Math. Anal., 3, (1972) 72–82.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cole, J. D., Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, Mass., 1968.MATHGoogle Scholar
  4. 4.
    Courant, R., and Hilbert, D., Methods of Mathematical Physics, Vol. II, Interscience, New York, 1966.MATHGoogle Scholar
  5. 5.
    Keller, H. B., Existence theory for multiple solutions of a singular perturbation problem, SIAM J. Math. Anal., 3 (1972) 86–92.MathSciNetCrossRefMATHGoogle Scholar

References

  1. 1.
    Courant, R., and Hilbert, D., Methods of Mathematical Physics, Vols. I, II, Interscience, N.Y., 1966.Google Scholar
  2. 2.
    Crandall, M. G. and Rabinowitz, P.H. Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971) 321–340.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dunford, N., and Schwartz, J., Linear Operators, Part I, Interscience, N.Y., 1958.Google Scholar
  4. 4.
    Keener, J.P., Some modified bifurcation problems with application to imperfection sensitivity in buckling, Ph.D. thesis. California Institute of Technology, 1972.Google Scholar
  5. 5.
    Keener, J.P., and Keller, H.B., Perturbed Bifurcation Theory, Archive Rat. Mech. Anal., to appear.Google Scholar
  6. 6.
    Keller, H.B., Nonlinear bifurcation, J. Diff. Eq., 7 (1970).Google Scholar
  7. 7.
    Keller, J.B., and Antman, S., Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, N.Y., 1969.Google Scholar
  8. 8.
    Krasnosel'ski, M.A., Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan Co., 1964.Google Scholar
  9. 9.
    Ladyzenskaja, O.A., and Ural'tseva, N.N., Linear and Quasilinear Elliptic Equations, Academic Press, 1968.Google Scholar
  10. 10.
    Protter, M.H., and Weinberger, H.F., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1967.MATHGoogle Scholar
  11. 11.
    Sather, D., Branching of solutions of an equation in Hilbert space, Arch. Rat. Mech. Anal. 36 (1970) 47–64.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Sattinger, D.H., Topics in Stability and Bifurcation Theory, University of Minnesota lecture notes, 1972. Also, Sattinger's lectures in the present volume.Google Scholar
  13. 13.
    Simpson, R.B., and Cohen, D.S. Positive solutions of nonlinear elliptic eigenvalue problems, J. Math. Mech. 19 (1970) 895–910.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Verlag 1973

Authors and Affiliations

  • Donald S. Cohen
    • 1
  1. 1.Department of Applied MathematicsCalifornia Institute of TechnologyUSA

Personalised recommendations