Advertisement

Reduction of the fields of modular functions and the rings of functions on p-adic manifolds

  • I. I. Pjateckii-Šapiro
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 155)

Keywords

Modular Form Fourier Coefficient Modular Function Automorphic Form Borel Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. L. Baily, Jr., Classical theory of ϑ-functions, Amer. Math. Soc., Proc. of Symp. in Pure Math., Vol. IX (1966), 306–311.MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Deligne, Formes modulaires et représentations l-adiques, Séminaire Bourbaki No. 353, 1968/69.Google Scholar
  3. 3.
    M. Eichler, Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Arch. Math. (Basel) 5 (1954), 355–366.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. I. Igusa, On the graded ring of theta-constants, Amer. J. Math. 86 (1964), 219–246.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    —, On the algebraic theory of elliptic modular functions, J. Math. Soc. Japan 20 (1968), 96–106.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Y. Ihara, On congruence monodromy problems, Vol. I, Lecture Notes, Tokyo, 1968.zbMATHGoogle Scholar
  7. 7.
    B. H. Kirštein and I. I. Pjateckii-Šapiro, Invariant subrings of induced rings, Izv. Akad. Nauk SSSR Ser. Mat., to appear (Russian).Google Scholar
  8. 8.
    D. Mumford, Geometric invariant theory, Springer, 1965.Google Scholar
  9. 9.
    I. I. Pjateckii-Šapiro and I. R. Šafarevič, Galois theory of transcendental extensions and uniformization, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 671–704. (Russian)MathSciNetGoogle Scholar
  10. 10.
    I. I. Pjateckii-Šapiro, On the reduction with respect to a prime module of the fields of modular functions, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1264–1274.MathSciNetGoogle Scholar
  11. 11.
    —, Induced rings and the reduction of the field of automorphic functions, Funkcional. Anal. i Prilozen 1 (1970). (Russian)Google Scholar
  12. 12.
    G. Shimura, Correspondances modulaires et les fonctions ζ des courbes algébriques, J. Math. Soc. Japan 10 (1958), 1–28.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    —, On the zeta-functions of the algebraic curves uniformized by certain automorphic functions, J. Math. Soc. Japan 13 (1961), 275–331.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    —, On modular correspondences for Sp(n,z) and their congruence relations, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 824–828.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • I. I. Pjateckii-Šapiro
    • 1
  1. 1.Academy of Sciences of the USSRUSSR

Personalised recommendations