Advertisement

Round-off error in the numerical solution of second order differential equations

  • M. N. Spijker
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 109)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Henrici, P.: Discrete variable methods in ordinary differential equations. New York: J. Wiley & Sons, 1962.zbMATHGoogle Scholar
  2. [2]
    Babuška, I., M. Práger, and E. Vitásek: Numerical processes in differential equations. London: J. Wiley & Sons, 1966.zbMATHGoogle Scholar
  3. [3]
    Krogh, F.T.: A variable step variable order multistep method for the numerical solution of ordinary differential equations. Proceedings of the IFIP Congress 1968, Booklet A, pp. 91–95. Amsterdam: North-Holland Publ. Co., 1968.Google Scholar
  4. [4]
    Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Roy. Inst. Technol., Stockholm. Nr. 130, 1959.Google Scholar
  5. [5]
    Spijker, M.N.: Stability and convergence of finite-difference methods (Thesis). Leiden University, 1968.Google Scholar
  6. [6]
    Henrici, P.: The propagation of round-off error in the numerical solution of initial value problems involving ordinary differential equations of the second order. Symposium, Provisional International Computation Centre, pp.275–289 (1960).Google Scholar
  7. [7]
    Timlake W.: On the numerical solution of special second order initial value problems (Thesis). Swiss Federal Institute of Technology, Zürich, 1963.Google Scholar
  8. [8]
    Timlake W.: An extension of the Σ2 procedure. Numer. Math. 7, 261–268 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Spijker, M.N.: Reduction of round-off error by splitting of difference formulae (submitted for publication).Google Scholar
  10. [10]
    Dyer, J.: Generalized multistep methods in satellite orbit computation. J. Assoc. Comput. Mach. 15, 712–719 (1968).CrossRefzbMATHGoogle Scholar
  11. [11]
    Collatz, L.: The numerical treatment of differential equations. Berlin: Springer-Verlag, 1960.CrossRefzbMATHGoogle Scholar
  12. [12]
    Spijker, M.N.: Convergence and stability of step-by-step methods for the numerical solution of initial-value problems. Numer. Math. 8, 161–177 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Metté, A.: Essai de résolution du problème de Goursat par la methode de Runge-Kutta pour une equation aux dérivées partielles du type hyperbolique. Rev. Française Informat. Recherche Opérationelle 1, 67–90 (1967).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • M. N. Spijker

There are no affiliations available

Personalised recommendations