Advertisement

Global accuracy and A-stability of one- and two-step integration formulae for stiff ordinary differential equations

  • W. Liniger
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 109)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. F. Curtiss and J. O. Hirschfelder, "Integration of stiff equations," Proc. Natl. Acad. Sci., USA 38 (1952) 235–243.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. G. Dahlquist, "A special stability criterion for linear multistep methods," BIT 3 (1963) 22–43.MathSciNetCrossRefGoogle Scholar
  3. [3]
    W. Liniger and R. A. Willoughby, "Efficient integration methods for stiff systems of ordinary differential equations," IBM Research Report RC 1970 (December 1967).Google Scholar
  4. [4]
    E. Stiefel, Einfuehrung in die numerische Mathematik, 2d. ed., Teubner, Stuttgart (1963) p. 158.Google Scholar
  5. [5]
    G. G. Dahlquist, "A numerical method for some ordinary differential equations with large Lipschitz constants," Proc. IFIPS Congress, Edinburgh (August 1968).Google Scholar
  6. [6]
    W. Liniger, "Global accuracy and A-stability of one-and two-step integration formulae for stiff ordinary differential equations," IBM Research Report RC 2396 (March 1969).Google Scholar
  7. [7]
    C. W. Gear, "The automatic integration of stiff ordinary differential equations," Proc. IFIPS Congress, Edinburgh (August 1968) A81–85.Google Scholar
  8. [8]
    W. Liniger, "A criterion for A-stability of linear multistep integration formulae," Computing 3 (1968) 280–285.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. Liniger, "Zur Stabilitaet der numerischen Integrationsmethoden fuer Differentialgleichungen," Doctoral Thesis, University of Lausanne (1957).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • W. Liniger

There are no affiliations available

Personalised recommendations