Subharmonics in hamiltonian systems

  • K. R. Meyer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 144)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc. Coll. Publ. IX, 1927.Google Scholar
  2. [2]
    L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Academic Press, 1963.Google Scholar
  3. [3]
    R. A. Gambill and J. K. Hale, Subharmonic and ultraharmonic solutions for weakly nonlinear systems, J. Rat. Mech., 5, 1956.Google Scholar
  4. [4]
    J. K. Hale, Oscillations in Nonlinear Systems McGraw-Hill, 1963.Google Scholar
  5. [5]
    K. R. Meyer, Generic bifurcation of periodic points, to appear in Trans. Amer. Math. Soc. Google Scholar
  6. [6]
    K. R. Meyer and J. I. Palmore, A new class of periodic solutions in restricted three body problem, to appear in J. Diff. Eqs.Google Scholar
  7. [7]
    H. Poincare', Les Methods Nouvelles de la Mécanique Celeste, tome 3, Gauthier-Villars, 1899.Google Scholar
  8. [8]
    T. Shimizu, On differential equations for non-linear oscillations, Mathematic Japonica, 2, 1951.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • K. R. Meyer

There are no affiliations available

Personalised recommendations