Non-trivial minimal sets — a survey

  • Nelson G. Markley
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 144)


Periodic Orbit Orientable Surface Klein Bottle Elementary Knowledge Recurrent Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cherry, T.M., Analytic quasi-periodic curves of discontinuous type on a torus, Proceedings of the London Mathematical Society, vol. 44(1938), pp. 175–215.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Denjoy, Arnaud, Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiques Pures et Appliquées, vol. 11(1932), pp. 333–375.zbMATHGoogle Scholar
  3. 3.
    Hartman, Philip, Ordinary Differential Equations, Wiley, New York, 1964.zbMATHGoogle Scholar
  4. 4.
    Kneser, Hellmuth, Reguläre Kurvenscharen auf den Ringflächen, Mathematische Annalen, vol. 91(1924), pp. 135–154.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lima, Elon, L., Common sigularities of commuting vector fields on 2-manifolds, Commentarii Mathematici Helvetici, vol. 39(1964), pp. 97–110.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Maier, A.G., Trajectories on the closed orientable surfaces, Matematiceskii Sbornik, vol. 12(1943), pp. 71–84 (Russian. English summary).MathSciNetGoogle Scholar
  7. 7.
    Markley, Nelson G., The structure of flows on two-dimensional manifolds, Dissertation, Yale University, 1966.Google Scholar
  8. 8.
    Markley, Nelson G., The Poincaré-Bendixson theorem for the Klein bottle, transactions of the American Mathematical Society, vol. 135(1969), pp. 159–165.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Markley, Nelson G., A new type of non-trivial minimal set, University of Maryland Technical Report TR 69-78.Google Scholar
  10. 10.
    Markley, Nelson G., On the number of recurrent orbit closures, Proceedings of the American Mathematical Society (to appear).Google Scholar
  11. 11.
    Nemytskii, V.V., and Stepanov, V.V., Qualitative Theory of Differential Equations, Princeton Mathematical Series, no. 22, Princeton University Press, Princeton, 1960, (Translated from Russian).zbMATHGoogle Scholar
  12. 12.
    Schwartz, Arthur J., A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, American Journal of Mathematics, vol. 85(1963), pp. 453–458; errata, p. 753.CrossRefzbMATHGoogle Scholar
  13. 13.
    Siegel, Carl Ludwig, Note on differential equations on the torus, Annals of Mathematics, vol. 46(1945), pp. 423–428.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Nelson G. Markley

There are no affiliations available

Personalised recommendations