Advertisement

Boundary value problems for second order differential equations

  • Andrzej Lasota
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 144)

Keywords

Maximum Principle Order Differential Equation Positive Maximum Order Ordinary Differential Equation Global Solvability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Bailey, L. Shampine, P. Waltman, The first and second boundary value problems for nonlinear second order differential equations, J. Differential Eqs. 2(1966), 399–411.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Banach, S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math., 5 (1934), 174–178.zbMATHGoogle Scholar
  3. [3]
    I. Barbalat, A. Halanay, Solutions périodiques des systèmes d'équations différentielles non-linéaires, Rev. Math. Pures Appl. 3 (1958), 395–411.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J.W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential equations, Pacific J. Math. 13 (1963), 1053–1066.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.W. Bebernes, R. Gaines, Dependence on boundary data and generalized boundary value problem, J. Differential Eqs. 4(1968), 359–368.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Caccioppoli, Sugli elementi uniti delle transformazioni funzionali, Rend. Sem. Mat. Univ. Padova, 3 (1932), 1–15.zbMATHGoogle Scholar
  7. [7]
    Z. Denkowski, On the boundary value problems for the ordinary differential equations of second order, Zeszyty Nauk. Univ. Jagiello, Prace Mat. 12 (1968), 11–16.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France, 34 (1904).Google Scholar
  9. [9]
    L. Jackson, Subfunctions and second order ordinary differential inequalities. Advances in Math. 2(1968) 307–363.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H.B. Keller, Existence theory for two point boundary value problems, Bull. Am. Math. Soc. 72 (1966), 728–731.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Lasota, Une généralisation du premier théorème de Fredholm et ses applications à la théorie des equations différentielles ordinaires, Ann. Polon. Math. 18 (1966), 65–77.MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Lasota, M. Łuczyński, A note on the uniqueness of two point boundary value problems I, Zeszyty Naukowe UJ, Prace matematyezne 12 (1968), 27–29.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Lasota, M. Łuczyński, A note on the uniqueness of two point boundary value problems II, Zeszyty Naukowe UJ, Prace matematyczne 13 (1969), 44–48.MathSciNetzbMATHGoogle Scholar
  14. [14]
    A. Lasota, Z. Opial, On the existence and uniqueness of solutions of a boundary value problem for an ordinary second order differential equation. Colloq. Math. 18 (1967), 7–11.MathSciNetzbMATHGoogle Scholar
  15. [15]
    A.Lasota, Z. Opial, On the existence of solutions of linear problems for ordinary differential equations, Bull. Acad. Polon Sci., Série sci. math. astronom. et phys. 14 (1966).Google Scholar
  16. [16]
    A. Lasota, Z. Opial, On the existence and uniqueness of solutions of nonlinear functional equations. Bull. Acad. Polon. Sci., Série sci. math. astronom. et phys. 15 (1967), 797–800.MathSciNetzbMATHGoogle Scholar
  17. [17]
    A. Lasota, Z. Opial, L'existence et l'unicité des solutions du problème d'interpolation pour l'équation différentielle ordinaire d'ordre n, Ann. Polon. Math. 15 (1964), 253–271.MathSciNetzbMATHGoogle Scholar
  18. [18]
    M. Lees, A boundary value problem for nonlinear ordinary differential equations, J. Math. Mech. 10 (1961), 423–430.MathSciNetzbMATHGoogle Scholar
  19. [19]
    A. Ju. Levin, On linear second order différential equations (Russian), Dokl. Akad. Nauk. SSSR 153 (1963) 1257–1260.MathSciNetGoogle Scholar
  20. [20]
    P. Lévy, Sur les fonctions des lignes implicites, Bull. Soc. Math. France, 48 (1920), 13–27.MathSciNetzbMATHGoogle Scholar
  21. [21]
    R.D. Moyer, Second order differential equations of monotonic type. J. Differential Eqs. 2 (1966), 281–292.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Ch. de la Vallée Poussin, Sur l'équation differentielle du second ordre, Journal Math. Pures et Appl. 8 (1929), 125–144.zbMATHGoogle Scholar
  23. [23]
    M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Englewood Cliffs, N.Y. Prentice-Hall Inc. 1967.zbMATHGoogle Scholar
  24. [24]
    K. Schrader, Solutions of second order ordinary differential equations. J. Differential Eqs. 4 (1968), 510–518.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    L.F. Shampine, Existence and uniqueness for nonlinear boundary value problems, J. Differential Eqs. 5 (1969), 346–351.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Stoilov, Sur les transormations continues des espaces topologiques, Bull. Math. Soc. Roumaine Sci., 35 (1933), 229–235.Google Scholar
  27. [27]
    E. Tutaj, On boundary value problems for ordinary differential equations for second order. Zeszyty Naukowe UJ, Prace matematyczne (in press).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Andrzej Lasota

There are no affiliations available

Personalised recommendations