Optimal control and linear functional differential equations

  • H. T. Banks
  • Marc Q. Jacobs
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 144)


Optimal Control Problem Functional Differential Equation Nonempty Compact Subset Lebesgue Measurable Function Fundamental Matrix Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. T. Banks, Representations for solutions of linear functional differential equations, J. Differential Equations 5(1969), 399–409.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. T. Banks, Variational problems involving functional differential equations, SIAM J. Control 7(1969), 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. T. Banks, A maximum principle for optimal control problems with functional differential systems, Bull. Amer. Math. Soc. 75(1969), 158–161.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Bellman and K. L. Cooke, "Differential Difference Equations", Academic Press, New York, 1963.zbMATHGoogle Scholar
  5. [5]
    C. Castaing, Sur les multi-applications measurables, Rev. Francaise Informat. Recherche Operationelle 1(1967), 91–126.MathSciNetzbMATHGoogle Scholar
  6. [6]
    D. H. Chyung and E. B. Lee, Optimal systems with time delays, Proc. 3rd IFAC Conf. London, 1966.Google Scholar
  7. [7]
    A. Halanay, "Differential Equations", Academic Press, New York, 1966.zbMATHGoogle Scholar
  8. [8]
    A. Halanay, frLe "principe du maximum" pour les systemes optimaux lineaires a retardement, C. R. Acad. Sci. Paris 254(1962), 2277–2279.MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Halkin, A generalization of LaSalle's "Bang-Bang" principle, SIAM J. Control 2(1964), 199–202.MathSciNetzbMATHGoogle Scholar
  10. [10]
    C. J. Himmelberg, M. Q. Jacobs, and F. S. Van Vleck, Measurable multifunctions, selectors, and Filippov's implicit functions lemma, J. Math. Anal. Appl. 25(1969), 276–284.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Q. Jacobs, Measurable multivalued mappings and Lusin's theorem, Trans. Amer. Math. Soc. 134(1968), 471–481.MathSciNetzbMATHGoogle Scholar
  12. [12]
    K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13(1965), 397–403.MathSciNetzbMATHGoogle Scholar
  13. [13]
    E. B. Lee, Variational problems for systems having delay in the control action, IEEE Trans. AC-13(1968), 697–699.MathSciNetGoogle Scholar
  14. [14]
    E. B. Lee, Geometric theory of linear controlled systems, to appear.Google Scholar
  15. [15]
    N. Levinson Minimax, Liapunov and "Bang-Bang", J. Differential Equations 2(1966), 218–241.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J. Math. Anal. Appl. 7(1963), 110–117.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Olech, Extremal solutions to a control system, J. Differential Equations 2(1966), 74–101.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. N. Oguztöreli, "Time-Lag Control Systems", Academic Press, New York, 1966.zbMATHGoogle Scholar
  19. [19]
    E. Pinney, "Ordinary Difference-Differential Equations", Univ. Calif. Press, 1958.Google Scholar
  20. [20]
    V. Volterra, "Theory of Functionals", Blackie, London, 1930.zbMATHGoogle Scholar
  21. [21]
    A. M. Zverkin, G. A. Kemenskii, S. B. Norkin, and L. E. El'sgol'ts, Differential equations with a perturbed argument I and II, Russian Math. Surveys 17(1962), 61–146 and Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom 2(1963), 3–49.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • H. T. Banks
  • Marc Q. Jacobs

There are no affiliations available

Personalised recommendations