Advertisement

A class of point partition numbers

  • Don R. Lick
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 186)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Chartrand and H. Kronk, "The point-arboricity of planar graphs", J. London Math. Soc., 44 (1969), 612–616.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Chartrand, H. Kronk, and C. Wall, "The point-arboricity of a graph", Israel J. Math., 6 (1968), 169–175.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    H.V. Kronk, "An analogue to the Heawood map-coloring problem", J. London Math. Soc., 1 (Ser. 2), (1969), 750–752.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D.R. Lick and A.T. White, "k-Degenerate graphs", Canad. Math. J., to appear.Google Scholar
  5. 5.
    D.R. Lick and A.T. White, "The point partition numbers of closed 2-manifolds", submitted for publication.Google Scholar
  6. 6.
    J. Mitchem, On Extremal Partitions of Graphs, Thesis, Western Michigan University Kalamazoo, Michigan, 1970.Google Scholar
  7. 7.
    G. Ringel, Farbungsprobleme auf Flachen and Graphen, Deutscher Verlag, Berlin, 1959.zbMATHGoogle Scholar
  8. 8.
    G. Ringel, and J.W.T. Youngs, "Solution of the Heawood map-coloring problem", Nat. Acad. Sci., 60 (1968), 438–445.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    H.S. Wilf, "The eigenvalues of a graph and its chromatic number", J. London Math. Soc., 42 (1967), 330–332.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Don R. Lick
    • 1
  1. 1.Western Michigan UniversityKalamazoo

Personalised recommendations