Graphs of (0,1)-matrices

  • Stephen T. Hedetniemi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 186)


Bipartite Graph Chromatic Number Line Graph Comparability Graph Point Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M. The uniqueness of the cubic lattice graph. J. Combinatorial Theory 6, 282–297 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beineke, L. Derived graphs and digraphs, Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.). Teukner, Leipzig, 17–33 (1968).Google Scholar
  3. 3.
    Berge, C. Some classes of perfect graphs, Graph Theory and Theoretical Physics, edited by Frank Harary. Academic Press, London, 155–165 (1967).Google Scholar
  4. 4.
    Bose, R.C. and Laskar, R. A characterization of tetrahedral graphs. J. Combinatorial Theory 3, 366–385 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dowling, T.A. A characterization of the Tm graph. J. Combinatorial Theory 6, 251–263 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gilmore, P. and Hoffman, A.J. A characterization of comparability graphs and interval graphs. Canad. J. Math. 16, 539–548 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hall, M., Jr. Combinatorial Theory. Blaisdell, Waltham, Mass., 1967.zbMATHGoogle Scholar
  8. 8.
    Harary, F. Graph Theory. Addison-Wesley, 1969.Google Scholar
  9. 9.
    Hoffman, A.J. On the line graph of a projective plane. Proc. Amer. Math. Soc. 16, 297–302 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hoffman, A.J. and Ray-Chaudhuri, D.K. On the line graph of a symmetric balanced incomplete block design. Trans. Amer. Math. Soc. 116, 238–252 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    König, D. Theorie der endlichen and unendlichen graphen. Leipzig, 1936; reprinted Chelsea, New York, 1950.Google Scholar
  12. 12.
    Krauz, J. Démonstration nouvelle d’une théoreme de Whitney sur les réseaux. Mat. Fiz. Lapek 50, 75–89 (1943).zbMATHGoogle Scholar
  13. 13.
    Moon, J.W. On the line-graph of the complete bigraph. Ann. Math. Stat. 34, 664–667 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ore, O. Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38, Providence, 1962.Google Scholar
  15. 15.
    Roberts, F. and Spencer, J. A characterization of clique graphs. Memorandum RM-5933-PR, The Rand Corp., Santa Monica, Calif., February, 1969.Google Scholar
  16. 16.
    Shrikhande, S.S. On a characterization of the triangular association scheme. Ann. Math. Stat. 30, 39–67 (1959).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Stephen T. Hedetniemi
    • 1
  1. 1.Department of Computer ScienceThe University of IowaIowa City

Personalised recommendations