Advertisement

Application d’un theoreme de MOKOBODZKY aux operateurs potentiels dans le cas recurrent

  • Daniel Revuz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 124)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. {1}.
    AZEMA J., DUFLO M., REVUZ D.: Mesure invariante sur les classes récurrentes des processus de Markov. Z. Wahrscheinlichkeitstheorie 8, p. 157–181 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  2. {2}.
    AZEMA J., DUFLO M., REVUZ D.: Mesure invariante des processus de Markov récurrents. Sém. Cal. Prob. Fac. Sci. Strasbourg III. Lectures Notes in Math. Springer Verlag (1967).Google Scholar
  3. {3}.
    BLUMENTHAL R. M., GETOOR R. K.: Markov Processes and Potential Theory. Academic Press — 1968.Google Scholar
  4. {4}.
    DUFLO M.: Opérateurs potentiels des chaînes et des processus de Markov irréductibles. A paraître.Google Scholar
  5. {5}.
    JAIN N. C.: Some limit theorems for a general Markov process. Z. Wahrscheinlichkeitstheorie 8, 41–48 (1967).CrossRefGoogle Scholar
  6. {6}.
    JAMISON B et OREY S: Tail σ-field of Markov processes recurrent in the sense of Harris. Z. Wahrscheinlichkeitstheorie 6, 206–223 (1966).CrossRefGoogle Scholar
  7. {7}.
    HUNT G. A.: La théorie du potentiel et les processus récurrents. Ann. Inst. Fourier 15 (1), 3–12 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  8. {8}.
    KEMENY J., SNELL J et KNAPP A.: Denumerable Markov Chains. Van Nostrand — 1966.Google Scholar
  9. {9}.
    MEYER P. A.: Les résolvantes fortement felleriennes d’après Mokobodzky. Séminaire de Probabilités II, Springer-Verlag 1968.Google Scholar
  10. {10}.
    OREY S.: Recurrent Markov chains. Pacific J. Math. 9, 805–827 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  11. {11}.
    UENO T.: Some limit theorems for temporally discrete Markov processes. J. Fac. Sci. Univ. Tokyo sect. I. 7 (1957).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Daniel Revuz
    • 1
  1. 1.Les Essarts Le RoiFrance

Personalised recommendations