L’inégalité de KULLBACK. Application à la théorie de l’estimation

  • A. Fuchs
  • G. Letta
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 124)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. BOURBAKI Espaces vectoriels topologiques. Chap. II. Hermann (1966).Google Scholar
  2. [2]
    W. FENCHEL On conjugate convex functions. Canad. J. of Math.-vol. 1 (1949) p. 73–77.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. FOURGEAUD & A. FUCHS-Statistique. Dunod (1967).Google Scholar
  4. [4]
    J. KEILSON Green’s function methods in Probability Theory. Griffin’s Statistical Monographs (1965).Google Scholar
  5. [5]
    M.A.KRASNOSELSKY & Y.B. RUTITSTY — Convex functions and Orlicz spaces. Hindustan publ. corp. (1962).Google Scholar
  6. [6]
    S. KULLBACK Information Theory ans Statistics. J. Wiley (1959).Google Scholar
  7. [7]
    S. MANDELBROJT Sur les fonctions convexes. C.R. Ac. S.c. Paris, vol. 209 (1939) 977–978.MathSciNetzbMATHGoogle Scholar
  8. [8]
    L.J. SAVAGE The foundations of Statistics. J. Wiley (1954).Google Scholar
  9. [9]
    G. SZÁSZ Introduction to lattice theory. Ac. Press (1963).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • A. Fuchs
  • G. Letta

There are no affiliations available

Personalised recommendations