Advertisement

L’inégalité de KULLBACK. Application à la théorie de l’estimation

  • A. Fuchs
  • G. Letta
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 124)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    N. BOURBAKI Espaces vectoriels topologiques. Chap. II. Hermann (1966).Google Scholar
  2. [2]
    W. FENCHEL On conjugate convex functions. Canad. J. of Math.-vol. 1 (1949) p. 73–77.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. FOURGEAUD & A. FUCHS-Statistique. Dunod (1967).Google Scholar
  4. [4]
    J. KEILSON Green’s function methods in Probability Theory. Griffin’s Statistical Monographs (1965).Google Scholar
  5. [5]
    M.A.KRASNOSELSKY & Y.B. RUTITSTY — Convex functions and Orlicz spaces. Hindustan publ. corp. (1962).Google Scholar
  6. [6]
    S. KULLBACK Information Theory ans Statistics. J. Wiley (1959).Google Scholar
  7. [7]
    S. MANDELBROJT Sur les fonctions convexes. C.R. Ac. S.c. Paris, vol. 209 (1939) 977–978.MathSciNetzbMATHGoogle Scholar
  8. [8]
    L.J. SAVAGE The foundations of Statistics. J. Wiley (1954).Google Scholar
  9. [9]
    G. SZÁSZ Introduction to lattice theory. Ac. Press (1963).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • A. Fuchs
  • G. Letta

There are no affiliations available

Personalised recommendations